Skip to content

The control of contactless magnetically levitated planar actuators with stationary coils, moving magnets and 6-DOF is very complicated. In contradiction to normal synchronous AC machines the forces and torques cannot be decoupled using a sinusoidal commutation scheme. Instead, a feedback linearization law has to be applied as commutation scheme that decouples the forces and torques and calculates the required currents to realize the desired forces and torques of the magnetic suspension. This feedback linearization law is based on the coupling matrix that links the current in each coil to the force and torque vector on the actuator. The accurate calculation of this coupling matrix in real-time is critical for controlling the planar actuator. In this paper a look-up table based method is used to apply feedback linearization and the performance of the algorithm is verified with measurements.

Author: | Published:
Booktitle: Proceedings of ISMB11