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ABSTRACT 

The control of contactless magnetically levitated planar 

actuators with stationary coils, moving magnets and 

6-DOF is very complicated. In contradiction to normal 

synchronous AC machines the forces and torques cannot 

be decoupled using a sinusoidal commutation scheme. 

Instead, a feedback linearization law has to be applied as 

commutation scheme that decouples the forces and torques 

and calculates the required currents to realize the desired 

forces and torques of the magnetic suspension.  

   This feedback linearization law is based on the coupling 

matrix that links the current in each coil to the force and 

torque vector on the actuator. The accurate calculation of 

this coupling matrix in real-time is critical for controlling 

the planar actuator. In this paper a look-up table based 

method is used to apply feedback linearization and the 

performance of the algorithm is verified with 

measurements. 

 

INTRODUCTION 

Usually, high-precision positioning systems with multiple 

DOF consist of a long-stroke stage with an additional 

short-stroke stage to achieve submicron accuracy in a large 

workspace. Cross-talk between the actuators in the system, 

friction in bearings and cable slabs to the moving parts 

limit the accuracy of such machines. 
   Six degree-of-freedom (DOF) synchronous planar 

actuators with an active magnetic suspension have the 

potential to combine long-stroke movement and 

submicron accuracy in one stage. These types of actuators 

are currently being developed as an alternative for these 

positioning stages [1-3]. 

   A cable slab to the mover can be made obsolete, if a 

topology is used with moving magnets and stationary coils 

as shown in Figure 1, since no power is necessary at the 

mover. Finally, the mechanical design of such an actuator 

is much simpler since long and short stroke movements are 

integrated in a single displacement device.  
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FIGURE 1: Magnetically levitated planar actuator with 

moving magnets and stationary coils. 

 

   The control of such a planar actuator is complicated 

[4-7] due to the non-linear relationship between the current 

in each coil and force-torque vector on the moving 

platform [4,6,7-9]. Another complexity is the 

over-actuated nature of the system, since there are over 

eighty coils and only six degrees of freedom, where each 

coil acts as a single Lorentz actuator. This requires 

additional constraints in the control law to get a unique 

solution for the currents in the coils to obtain a certain 

desired force-torque vector [4,6,7]. Finally, the control 

currents have to be recalculated every sample time so the 

commutation algorithm must be accurate but also fast 

enough to be calculated at closed-loop rates of several kHz 

[8,9]. 

   By choosing an appropriate mapping between the 

control currents and the force-torque vector on the magnet 

array, the first two problems can be addressed [6,7]. Such a 

mapping needs an accurate calculation of the matrix that 

couples the currents in the coils to the force-torque vector 

on the platform. The calculation of the coupling matrix can 

be done by using simplified models of the real system 

[8,9]. 

Another way of calculating the coupling matrix is to use a 

look-up table. While some effects are hard to include in a 

simple model (e.g. end-effects), they can be easily 

included using look-up tables. Since all model calculations 

are done offline, a very accurate and time consuming 
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model can de used, while accessing a look-up table in 

real-time is very fast. However, the amount of memory 

that a look-up table can use is limited. For fast access times 

to the data in the look-up table, all data should be stored on 

the onchip cache of the DSP. 

   Since the planar actuator has a large number of coils, 

long stroke and multiple DOF, the use of one look-up table 

is prohibited, due to its extremely large size for a DSP. In 

addition, the offline computational effort for such a 

look-up table is enormous, even with the computational 

power available nowadays. However, look-up tables can 

be used for the control of such a system if a smart approach 

is used [11] which keeps the advantages of a look-up table, 

while keeping its size small enough for DSP-based 

real-time control. 

 

FORCE AND TORQUE CALCULATION 

All forces calculations are based on the Lorentz force, 

since the planar actuator does not contain any 

ferromagnetic materials. This is due to the fact that the 

moving magnet planar actuator is based on repulsive 

forces between the stationary coils and the moving 

magnets. 

The Lorentz force Fc on a coil exerted by an external 

magnetic flux density generated by the magnet array Bm 

can be written as:  

 

,
c

c m c
V

dV= ×∫F J B    (1) 

 
where J is the current density in the coil and Vc is the 

volume of the coil. The force Fm and torque Tm on the 

magnet array is given by: 

 

,
c

m m c
V

dV= − ×∫F J B    (2) 

,
c

m mc m c
V

dV= − × ×∫T r J B    (3) 

For every volume element dVc, the torque arm rmc from the 

magnet array to the element is different. It is not possible 

to find an analytical expression for the Lorentz force and 

Lorentz torque integrals in case of a three-dimensional coil. 

Nevertheless, it is possible to obtain an analytical solution 

of the force and torque for a coil is some simplifying 

assumptions are done. First, the magnetic flux density of 

the planar actuator can be represented as a sum of spatial 

harmonics as it is discussed in [8] and [10]. Second, the 

coil can be modeled as a number of filaments or surfaces, 

for which it is possible to find an analytical solution for the 

Lorentz force and Lorentz torque [8]. 

 

 

 As can be concluded from the expressions derived in [8], 

the torque acting on the magnet array depends on two 

components. The first component can be expressed as the 

cross-product between a constant torque arm and the force 

vector, where the torque arm is defined as the vector 

between the center of mass of the planar actuator and the 

geometrical center of the coil. The other component does 

not depend on an arm, but is the result of the force 

distribution over the coil and the different arm to each coil 

volume element dVc. 

   The analytical expressions provide a good insight in the 

mechanisms that determine the forces and torques on the 

planar actuator. However, the simplifying assumptions 

compromise the accuracy of the model. First of all, only 

the first spatial harmonic of the planar actuator magnet 

array can be included if real-time calculation is required. 

Second, it is not possible to include end-effects, thereby 

constraining the use of coils on the perimeter of the magnet 

array. The current in these coils must be forced to zero [7]  

by using an additional window function in the calculation 

of the coupling matrix. If the end-effects are included, the 

coils on the perimeter can be used to control the planar 

actuator. These coils have the largest arm with respect to 

the center of the platform, so they can contribute 

significantly to the applied torque vector. 

 

DERIVATION OF LOOK-UP TABLES FOR THE 

EXPERIMENTAL SETUP 

Using this approach a commutation scheme is derived for a 

prototype of a planar actuator. The coil and magnet array 

are shown in Figure 2 and Figure 3, respectively. The 

magnet array consists of 10 x 10 poles and interacts with a 

maximum of 81 coils of the 105 coils in the setup at any 

time. The dimensions of the magnet array and the coils are 

listed in Table 1. 

 

 
FIGURE 2: Photo of the coil array assembly. 
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FIGURE 3: Photo of the Halbach magnet array assembly. 

 

TABLE 1: Dimensions of magnet and coil array 

Parameter Symbol Value Dimension 

Pole pitch τ 40.0 [mm] 

HB magnet width d 14.0 [mm] 

Magnet height mh 10.0 [mm] 

Coil width cw 51.0 [mm] 

Coil bundle width cbw 21.1 [mm] 

Coil bundle height cbh 11.4 [mm] 

Airgap g 2.0 [mm] 

 

The look-up table method [11] is based on symmetries in 

the magnetic field density underneath the magnet array. To 

show the symmetry, the forces KF and torques KT per 

Ampere-turn for a single coil are calculated. The torque 

look-up table term KT is the part of the torque vector that 

depends on the volume integral and is defined as: 

 

,
realT T F

K K K= − ×r    (4) 

 

The coil is moved over a distance of 2τ in the plane 

underneath the magnet array, where the initial position is 

shown in Figure 4 and the movement directions are 

indicated by the two arrows. The center of the top-left 

magnet is defined as the origin of the coordinate-system. 

The values of KF and KT are shown in Figure 5 and from 

this figure it is very clear that the values are repeating itself 

every pole pitch. It is also visible that the round coils do 

not have any volume dependent term for KTz, which means 

that the torque around the z-axis only depends on the cross 

product of a fixed arm and the force vector. As described 

in [11], similar plots can be drawn for the end-effects at the 

sides and at the corners. 

 

  
FIGURE 4: Halbach magnet array with a single coil 

 
FIGURE 5: Plot of the x-, y- and z-components of KF and 

KT for different positions underneath the Halbach array. 

 
   The behavior of all coils can be deduced from three sets 

of look-up tables. There is one set for coils completely 

underneath the magnet array (
c
KF,T), a set for coils at the 

side (
t
KF,T) and finally a set for coils at the corner (

tl
KF,T). 

The area at which the values are calculated is shown in 

Figure 6, as well as the areas where the sets are used. The 

look-up tables have a resolution of 0.5 mm in the x- and 

y-direction and are 2D. The z-dependency is included 
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using a polynomial fit of the field strength as function of 

the airgap. Since the variation in height is only 2 mm this 

method does not introduce significant errors [11].  

   The commutation scheme includes all end-effects and 

can calculate the currents for all 81 coils within 104 µs, 

according to a dSpace benchmark test using a DS1005    

1 GHz processor. 

 

 
FIGURE 6: Look-up table sections 

 
EXPERIMENTAL VERIFICATION 

The commutation is verified by mounting the magnet array 

on a 6-DOF Force/Torque (FT) sensor that is fixed in a x-y 

robot. The robot moves the magnet array over the coil 

array while the commutation algorithm calculates the 

currents that are necessary to realize the desired forces and 

torques. The measured forces and torques at different 

positions above the coil array are compared with the 

desired values to verify the performance of the 

commutation algorithm. 

   In Figure 7, a photo of the experimental setup is shown 

with the relevant parts. All coils are embedded in resin to 

create a smooth surface, so they are not visible as in Figure 

2, which was made before casting. 

   The magnet plate is moved within the workspace (200 x 

80 mm) to 1071 grid points that are spaced 4 mm apart. At 

every position two measurements are done. First, a zero 

measurement is done, i.e. the reading of the 6-DOF FT 

sensor is measured with a zero current setpoint to all coil 

amplifiers. Second, the current setpoints are sent to the 

amplifiers to create 50 N in all three directions and zero 

torque around the three axes. Both the zero measurement 

and the load measurement are done for half a second with a 

sample time of 330 microseconds and then the mean of 

 
FIGURE 7: Experimental setup. 

 

each period is used as the measured value. The magnet 

plate is kept at the same position by the x-y robot during 

this process. Then the robot moves the magnet plate to the 

next grid point, where the process is repeated. The 

measured forces and torques by the 6-DOF FT sensor are 

shown in Figure 8 and Figure 9, respectively. 

 

DISCUSSION 

As is clear from Figures 8 and 9, the commutation 

algorithm is capable of calculating the currents necessary 

to realize the desired forces and torques on the magnet 

array with an accuracy of ca. 3%. In addition, some 

variation is visible in the surfaces that are fitted through 

the measurement points. These variations show some 

periodicity, which is related to the spacing of the coils. 

Both in x- and y-direction, the coils are space 53.33 mm 

apart and the variation of the errors is related to this 

distance.  

    The errors have several causes, which are: 

1. Mechanical tolerances of the coils. The standard 

deviations of the coil height, coil inner diameter 

and coil outer diameter are 52 µm, 12 µm and 

409 µm, respectively. 

2. Mechanical tolerances of the magnet plate. The 

magnets are 50 µm accurate and the plate is about 

100 µm deformed due to the gravity and forces 

between the magnets.  

3. The magnetization of the magnets is not perfectly 

uniform and the magnetization vector is not 

completely perpendicular to the magnet surface. 

4. The alignment of the coordinate systems of the 

robot, the magnet plate, the coil block and the 

6-DOF FT sensor is not perfect.  

All these factors contribute to the errors, so it is hard to 

distinguish which effect is dominant. 
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FIGURE 8: Measured forces on the magnet plate. 

 

CLOSED LOOP CONTROL 

Now the commutation has been verified the planar 

actuator can be put in a closed loop control system. The 

position and orientation of the magnet array is measured 

using eddy-current sensors. The mass of the planar 

actuator is 13.7 kg, of which 11.7 kg are magnets. The 

other 2 kg is aluminum honeycomb material that is used to 

provide mechanical support. 

   Six SISO PD position controllers with a 10 Hz 

bandwidth are applied for each DOF of the planar actuator. 

A MIMO control is not required since the commutation 

algorithm provides feedback linearization. To investigate 

the accuracy and quality of the decoupling, a step of 0.1 

mm is applied in the x-direction, while the errors and 

controller outputs for all six DOF are monitored. In Figure 

10 the response in x-direction is shown and the errors of all 

other DOF.  The corresponding force and torque outputs 

of the controllers are shown in Figure 11. 

   The errors show that there is cross-coupling between 

the degrees of freedom but it is limited. In addition, it is 

visible that there is a position dependent force ripple, since 

the static errors depend on the x-position, which is clearly 

visible for z and the rotation around the x-axis, θ.  

    
FIGURE 9: Measured torques on the magnet plate. 

 

 
FIGURE 10: System response of the planar actuator on a 

0.1 mm step in x-direction. 
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FIGURE 11: Controller output for each DOF of the planar 

actuator during a 0.1 mm step in x-direction. 

 

The errors are nevertheless in the sensor noise, which is 

less than 1 µm RMS and several µrad RMS.  

   The x-controller outputs a peak force of almost 20 N, 

but the reaction in y- and z-direction are about 0.2 N, 

which shows that the cross-coupling is about 1%. The 

torques are small, considering that the planar actuator 

measures 425 x 425 mm and has a mass of 13.7 kg. 

 

CONCLUSION 
A look-up table based commutation algorithm for the 

decoupling of forces and torques on a 6-DOF magnetically 

levitated contactless planar actuator with moving magnets 

is presented that includes end-effects. The method is 

verified with measurements and can realize the desired 

forces and torques within an accuracy of 3%. Finally, the 

behavior of the planar actuator with this commutation 

algorithm is demonstrated in closed loop control. 
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