Skip to content

This paper describes the application of lumped parameter modeling techniques to designing high temperature superconducting bearings for outer-rotor flywheel energy storage systems. The lumped parameter models decrease computational time by 99% compared to Finite Element Analysis (FEM) without compromising fidelity needed to capture the non-linear and hysteretic force-displacement behavior between a levitated permanent magnet and bulk superconductor. The techniques formulated can be used to quickly evaluate lifting capacity and translational stiffness for a superconducting bearing design. The validity of the modeling approach has been verified by comparing results from FEM studies and experimental tests.

Author: | Published:
Booktitle: Proceedings of ISMB14