Skip to content

The optimization of stiffness of a permanent magnetic single ring bearing is presented in this paper. This is achieved by only changing the magnetization pattern. More precisely, a homogeneous magnetization is replaced by a rotating magnetization with two magnetic poles, leading to a 3.7-fold improvement in stiffness. Usually, such a rotating magnetization is realized by stacking several homogeneously magnetized rings with different magnetization direction, which is referred to as Halbach stacking. Our approach was to realize a continuously rotating magnetization pattern in one ring. In order to achieve the maximum possible stiffness for the given bearing dimensions, the optimization of the magnetization process is crucial and also presented in the paper.

Author: | Published:
Booktitle: Proceedings of ISMB14