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Abstract

The influence of a periodic open-loop control
operated in parallel to an existing closed-loop
PID control is investigated on a rotor system
supported by two radial active magnetic
bearings. The transient behaviour of the rotor
is studied numerically and first experimental
results are shown to demonstrate the appli-
cability of the method. It is highlighted that
by tuning the periodic control properly it is
possible to amplify artificially the external
damping of the rotor system. This concept
allows increasing the total external damping
well beyond the stability margin of the
closed-loop control cycle.

1 Introduction

Systems of differential equations with pe-
riodic coefficients, also termed parametri-
cally excited systems, have been the fo-
cus of scientific research for a long time.
The frequency of the parameter change is
prescribed explicitly as a function of time
and is independent of the motion of the
system. Classical examples are a period-
ically moving pivot point of a pendulum
or a rotating shaft with a nonsymmetric
cross-section. Parametrically excited sys-
tems and structures have been studied ex-
tensively in the past because of the some-
how unexpected dynamic phenomena that
occur in such systems. A parametrically
excited system may exhibit a destabilising
parametric resonance if the variation fre-
quency is close to [10]
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Herein w; denotes the ith natural frequency
of the underlying undamped system and n
is a natural number. Several publications
deal with a single or coupled differential
equations having time-periodic coefficients
[1, 7]. The main focus there was to inves-
tigate the destabilising effect of paramet-
ric excitation, i.e. the instability boundary
curves in the domain of system parameters.
The non-resonant cases were not considered
to be relevant for applications. The mecha-
nism of damping by parametric excitation,
as investigated here, is based on the cou-
pling of vibration modes which leads to an
artificial increase of the overall damping in
the system. A specific control frequency at
which the system vibrations are reduced is
termed as a parametric anti-resonance fre-
quency. The main theoretical contributions
with respect to parametric anti-resonances
in this context can be found in [8, 2, 4].

Very few studies have been undertaken
to verify the existence of parametric anti-
resonances experimentally. Mainly discrete
2DOF systems of an artificial nature have
been investigated so far. The main mo-
tivation of the present study is to prove
experimentally that the concept of damp-
ing by parametric excitation is applicable
for damping the low-frequency modes of a
complex, flexible rotor system.

A parametric excitation can be intro-
duced in the system in a simple open-
loop manner, since the stiffness parame-
ter in focus needs to be varied at a well-



defined, fixed frequency and fixed ampli-
tude. The present paper examines this
open-loop strategy to increase the effec-
tive damping of a rotor system based on
preliminary theoretical investigations [9, 3|.
Therein, it was shown theoretically that a
periodic change in the bearing stiffness is
capable of increasing the critical speed of
a simple Jeffcott rotor under the influence
of a destabilising self-excitation. Now, this
approach is used to enhance the damping
of an already stable system and realised
experimentally for a complex flexible rotor
system supported by active magnetic bear-
ings.

First, the model equations of a flexible ro-
tor system with multiple rigid disks at-
tached to its shaft are stated. Then, a nu-
merical prediction is given for the regions
where damping by parametric excitation is
effective. Finally, first experimental results
are compared to the theoretical predictions.
This work summarises the contribution [5].

2 Lateral vibrations of a flexible ro-
tor with multiple rigid disks

The mechanical model of the rotor system
under consideration is shown in Fig. 1. A
slender, flexible rotor shaft is rotating at a
constant rotational speed ) provided by a
driving motor. The shaft is assumed to be
torsionally rigid and isotropic. Five rigid,
unbalanced disks are attached to the shaft,
three disks (D1, D2, D3) and two bear-
ing studs (AMB1, AMB2). The shaft is
supported by two active magnetic bearings.
The actual stud position is measured and
fed back to decentralised PID controller for
position control. The total length of the
shaft is 680 mm.

The flexible, continuous shaft is discretised
using a single finite beam element between
two disks, see e.g. [6]. Rigid disks with
mass and moment of inertia are attached
at discrete positions along the shaft. Their
symmetry axis is aligned with the central
rotary axis leading to a diagonal mass ma-
trixThe element matrices are assembled to

the global stiffness and mass matrices of the
continuous shaft, Cz/y and Mz/y, and the
global mass matrix M, of the rigid disks, all
with respect to the global coordinate vector
of lateral displacements and inclinations.

The electromagnetic force generated by the
active magnetic bearing (AMB) depends
on its geometry parameters (cross-section
of the pole shoes, size of the air gap) and
its electromagnetic properties (number of
turns, permeability) and is a strongly non-
linear function of these parameters. In
practice, however, the resulting force can
be linearised close to a certain operation
point as

Fim — ki — kgr, (2)

assuming a high bias current for pre-
magnetisation and small control current 7.
and rotor deflection r. Herein, k; is the
current-force constant and —k, the nega-
tive bearing stiffness. Cross-coupling pa-
rameters are neglected.

The most widely used control concept for
an AMB is a PID controller. The propor-
tional (kp) and the derivative actions (kp)
constitute the stiffness and damping char-
acteristics of the bearing while the integral
action (kj) assures that the resulting rotor
deflection r keeps track with a predefined
setpoint,

Z'c:kfp’l“—f-k’D’l'“—f-k’[/Tdt. (3)
Inserting into eq. (2) leads to
Flin — cor 4 dpt + kik[/r dt, (4)

with the active stiffness and active damping
coefficients

Cm = k’zkfp - k?s, dm = ksz (5)

Adjusting the control parameters kp and
kp determines the dynamic properties of
the AMB. Both AMBs are assumed to be
isotropic. With the mechanical properties
in eq. (5), the stiffness and damping matri-
ces (C,, and D,,) have diagonal form with
entries at the location of the AMBs.
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Fig. 1: Flexible rotor with multiple disks and electromagnetic supports.

bending stiffness of rotor shaft 41.4 N/m
mass per unit length of shaft 0.4 kg/m
total length of rotor and shaft diameter 680 mm, 8 mm
rotor  mass and axial moment of inertia of disk D1 0.78 kg, 0.4 - 1073 kgm?
mass and axial moment of inertia of disk D2 and D3 1.20 kg, 1.4 - 1073 kgm?
mass of studs in AMB1 and AMB2 0.88 kg
number of electromagnets 4 in each bearing
magnetic bearing constant 3.64 - 107 Vsm/A
AMBs curr(?nt—fOI.“ce constant k; 42.1 N/ A5
bearing stiffness k; 1.052 - 10° N/m
controller sampling frequency 8 kHz
radial clearance 0.80 mm
Table 1: Details of rotor system in Fig. 1.
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Fig. 2: Rotor deflection of disk D2 under the action of unbalance forces for e = 0.
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Fig. 3: Time histories of rpo in dependency of the control parameter v at € = 0.30.



The rotor system is excited by unbalance
forces f., f, originating from eccentricities
of the five rigid disks (including the bearing
studs).

Together with the electromagnetic actions,
the equations of motion of the rotor system
with respect to the global coordinate vector
q = [@®T,q*T]T become

Mg+Dg+Cq=f (6)

with the assembled coefficient matrices and
the global force vector

M + M, 0
0 M/ +M, |’
Dy,

—0G, [ f
D:{QGT D,, } f—{fy}’
[Ci+cC, 0
C_{ 0 C§+Cm}‘(7)

|

The only source of damping is the control
strategy in the AMBs. The lateral vibra-
tions in y- and z-directions are coupled by
gyroscopic effects of the rigid disks. The
operational deflection of the present rotor
is assumed to be sufficiently small such
that rotor-stator contacts with safety bear-
ings are excluded and the linearisation of
the electromagnetic force in eq. (2) remains
valid.

A time-periodic stiffness variation in the
rotor system is realised in the AMBs by
introducing a time-dependent proportional
action kp(t) in the PID controllers. This
control parameter is changed periodically
for both AMBSs simultaneously according to

kp(t) = kp (1 + esinvt) (8)

resulting in the global time-periodic stiff-
ness matrix

C(t) = Cp + ¢ C; sin vt, 9)

where Cj, C; are time-independent coeffi-
cient matrices.

Numerical study
The flexible rotor system in Fig. 1 is exam-
ined for a fixed set of system parameters

listed in Table 1 for different values of the
amplitude € and the control frequency v of
the time-periodicity introduced in eq. (8).
The equations of motion in eq. (6) are
solved by direct numerical integration. Ini-
tially, the rotor shaft in Fig. 1 rests at the
centre position q = 0. Since unbalance
forces f acts on the rotor system, the ro-
tor shaft is deflected from this initial con-
dition to a new deflection that rotates with
the rotor speed (). The transition between
these two states is described by free vibra-
tions. A sample time history for the radial
deflection of the disk D2

[7D2| = \/ Yho + 2Dy

at constant, nominal AMB characteristics
(e = 0ineq. (8)) and a constant rotor speed
of Q2 =60 1/s is shown in Fig. 2. The same
features are observed for the time histories
at the other disk positions and are therefore
omitted.

(10)

The first two natural frequencies obtained
from an eigenvalue analysis of the un-
damped system in eq. (6) at rest together
with the resulting parametric resonance
and anti-resonance frequencies are listed in
Table 2. Evaluating the analytical predic-
tions in [2] reveals that for the present sys-
tem only the parametric excitation frequen-
cies of difference type in eq. (1), |wy —w;|/n,
correspond to parametric anti-resonance
frequencies at which an increase of effective
damping is achievable. Within the present
investigation, the influence of gyroscopic ef-
fects on the first four natural frequencies is
below 4%. Note that the time history in
Fig. 2 describes the radial deflection of a
disk in a coordinate system that is fixed
to the disk. Consequently, the observed
frequency components correspond to the
speed-dependent natural frequencies w;[(2]
that are modulated by the rotor speed .
The lowest frequency component in Fig. 2
becomes |Q — w;|/27 ~ 8 Hz.

Now, the periodic open-loop control in the
AMBEs is switched on following the control
law in eq. (8). The vibration behaviour



natural frequencies
wp = 110.6 1/s, wy =151.6 1/s
main parametric resonance frequencies
2wy =221.2 1/s, 2we = 303.2 1/s,
w1 + wo = 262.2 1/S
main parametric anti-resonance frequency
|W1 - WQ| =41.0 1/S

Table 2: First frequencies at rest, {2 = 0.

is investigated at a control amplitude of
€ = 0.30 and a fixed control frequency v in
the range between 0 and 400 1/s. Numeri-
cal integration of the equations of motion in
eq. (6) at v =0 1/s results in the time his-
tory already shown in Fig. 2. All time his-
tories in the frequency range of interest are
summarised in the contour plot in Fig. 3.
Light areas depict low values and dark ar-
eas high values of the disk deflection |rps].
Additionally, frequency lines of the frequen-
cies 1 defined in eq. (1) are plotted for the
orders n = 1 up to n = 5 on the right
hand side of the figure. Their line thickness
is scaled by the order n. The frequencies
listed in Table 2 are of order n = 1 and are
plotted as lines with the largest thickness.
All possible frequency combinations 1, are
divided into three groups corresponding to
the three block on the right hand side
of the figure: the two groups 2w;/n and
(wr, + w;)/n that correspond to destabilis-
ing parametric excitation frequencies, and
the group |wy —wy|/n which corresponds to
stabilising parametric frequencies. These
frequency lines help encoding the complex
distribution of the time series. At each of
these frequencies a dense frequency interval
exist within which the system vibrations
are either excited or damped. If these fre-
quency intervals overlap, it depends which
effect dominates. In general, the destabil-
ising effect at frequencies 2w;/n dominates
the effects acting at frequencies |wy, Fw;|/n.

Destabilising effects, a decrease in effective
damping, are found where the control pa-
rameter v is in the vicinity of the frequen-
cies 49 1/s, 172 1/s, 221 1/s and 300 1/s.
The corresponding parametric resonance

vinl/s e log. decr.
113 0.00 1.9
113 0.15 2.5
113 0.30 3.9
113 0.45 4.6

Table 3: Logarithmic decrement at the
optimum control parameter v = |ws — ws].

frequencies can be identified by comparison
with the frequency lines on the right hand
side, e.g. the shaded area at 221 1/s corre-
sponds to the frequency 2w; = 221.2 1/s.
Indentations in the distribution towards
lower time values in Fig. 3 give hints of an
increase in effective damping. The main
stabilising control frequency is found to be
close to v = |wyg —ws3| = 113.4 1/s. This is
the optimum control frequency to be cho-
sen for the proposed open-loop control in
eq. (8) for this specific rotor system.

The corresponding time histories of the de-
flection rps of disk 2 at the optimum con-
trol frequency v = |wy — ws| is shown in
Figs. 4. The time history of the rotor sys-
tem for switched off open-loop control (e =
0) was presented in Fig. 2. Introducing the
open-loop control in eq. (8) at a moderate
control amplitude of ¢ = 0.30, increases
the effective system damping slightly, see
Fig. 4. Evaluating the logarithmic decre-
ment of these time histories gives a good
measure of the effective damping present
in the rotor system. The determined values
are summarised in Table 3. Hence, for the
present system configuration the effective
damping can be enhanced, or amplified, by
a factor of 2.4.

It has to be highlighted that that the pro-
posed open-loop control method works only
if a certain level of the control amplitude
¢ is exceeded. Upon exceeding this value,
an additional artificial damping is acting
in the rotor system which increases the
overall system damping. The drawback of
the open-loop method applied to this ex-
ample system is that although the tran-
sient, vibration can be reduced significantly,
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Fig. 4: Time history at optimal controller parameters v = |wy — w3| and € = 0.30.

a certain level of oscillations remains at
the final state due to the persistent alter-
ation of the bearing stiffness. These oscil-
lation increase for higher values of the con-
troller amplitude. It depends on the ap-
plication whether these oscillations inter-
fere with the desired operation task or the
artificial increase in damping can be justi-
fied. A proper countermeasure could be a
simple on/off logic that activates the open-
loop control on demand only, e.g. when
the radial deflection exceeds a predefined
limit. The effect of a simple on/off switch
is shown in Fig. 4 where the proposed open-
loop control is switched off at 1.5 s. Hence,
the artificially increased system damping is
switched back to its initial value and the
rotor vibrations decrease with the lower ini-
tial system damping induced by the inher-
ent active damping in the AMBs. A soft
on/off switching is suggested to avoid sud-
den changes in the stiffness characteristics
leading to small but impact-like excitation.

Experiment

In this section experimental results are pre-
sented that underline the theoretical find-
ings from above. Figure 6 shows the experi-
mental realisation of the system introduced
in Fig. 1 and Table 1. The actual position
of the rotor shaft is measured by inductive
sensors (two for each radial direction y and
z). These signals are processed by the real-
time controller hardware dSpace, which im-
plements the decentralised PID controllers
in eq. (3) to regulate the currents provided
to each of the electromagnets. In parallel
to this PID control, an open-loop control of
the proportional action is implemented ac-
cording to eq. (8), which realises a periodic
change in the active bearing stiffness.

At the sample rotor speed of 600 rpm (be-
low the first critical speed), the rotor is
levitated in the AMBs by the PID con-
trollers, while the proportional action kp
is open-loop controlled at the theoretically
predicted optimum control frequency v =
lwy — ws| = 113.4 1/s. At the time of 8 s
the system is excited by adding an impulse-
like current to the controller current. Time
histories for different values of the control
amplitude £ are shown in Fig. 6. For the
system without open-loop control (¢ = 0),
the system response decays with an effec-
tive logarithmic decrement of 0.8. Activat-
ing the open-loop control at the optimum
frequency enhances the system damping ar-
tificially which results in increased logarith-
mic decrements. A value of 1.6 is achieved
for the logarithmic decrement at a control
amplitude of ¢ = 0.15 and a value of 3.7
(which lies well beyond the stability bor-
der of the PID control of 1.2) at ¢ = 0.30.
Higher control amplitudes are not possible
with the present set-up of the rotor test rig.

Without the proposed open-loop control
(¢ = 0), the system damping can be in-
creased simply by the active damping d,,
in eq. (5) introduced by the PID con-
trollers, too. However, this increase is lim-

Fig. 5:
disks supported by two magnetic bearings.

Flexible rotor with multiple
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Fig. 6: Measured time histories at the optimal controller parameter v = |wy — ws].

ited by the level of measurement noise in
the control loop and its amplification by
the derivative action kp. Starting from op-
timum PID controllers in the nominal sys-
tem, kp can be amplified maximally by
a factor of 1.7. Introducing the proposed
open-loop control at the control parameters
e = 0.3 and v = |wy—ws], allows an increase
in effective system damping well above this
factor. The maximum amplification factor
for the effective damping that is achievable
experimentally is 4.6 which lies well above
the limit realisable by conventional active
damping.

Summary

In this study new findings on damping by
parametric excitation are presented. A
flexible rotor system is analysed having
support bearings with time-periodic, open-
loop control of the stiffness coefficients. It
is verified theoretically and demonstrated
experimentally that the proposed open-
loop control method is capable to increase
the overall damping of a flexible rotor sys-
tem. The open-loop method possesses sev-
eral advantages. First, introducing a peri-
odic change in the bearing stiffness works
as an open-loop system with no feedback
control necessary. Secondly, the control
method can be applied in parallel with ex-
istent methods, since it affects mainly the
free vibrations of a system. Finally, in
the present system, the proposed control
method is capable of increasing the effec-
tive damping well above the PID-stability
margin.
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