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Abstract

In this paper an analytical solution for the forces of
a magnetic bearing is presented. The development
of the equations is based on the magnetic scalar po-
tential Φ. Since the consideration of a plain model
(2D) is sufficient, we solve the Laplace equation in
polar coordinates. The magnetic flux density B is
derived from the scalar potential. The solution is a
sum of a series of magnetic field waves with different
orders. Only the radial and tangential components of
the magnetic flux density (Br,Bt) along a closed line
surrounding the levitating object are relevant for the
calculation of forces. In the next step the Maxwell
stress tensor is calculated for each point on this line.
This results in mechanical stress and the integration
of the mechanical stress yields to the desired force.
The same procedure applies for the torque in electri-
cal machines.
First, the equation for tangential forces (which forms
the torque) are derived. It was found, that only ma-
gnetic field components with the same order generate
a resulting torque. More interesting for a magnetic
bearing are the force generating field components.
There only field waves, whose orders differ by ±1,
yield a resulting force.
Finally, the equation of forces for a magnetic bearing
can be represented in an analytical way as a series of
magnetic field components. These kind of represen-
tation is useful for further design and optimization
considerations.

1 Introduction

Forces in magnetic bearings as well as the tor-
que in electrical machines are determined by

the magnetic field in the air gap between ro-
tor and stator. Each point in the air gap can be
assigned a mechanical stress by means of the
Maxwell stress tensor. Therefore the magnetic
field is evaluated along a closed line (usually a
circle). The integration of the mechanical stress
over this line yields a force and the torque. This
is the way finite element programs (e.g. FEMM,
Ansys-Maxwell) work. Since the magnetic field

Fig. 1: Schematic view of a radial magnetic bearing
with annular air gap

can have almost any shape, it makes sense to use
numerical programs. On the other hand, analytic
equations have the advantage that relations, bet-
ween the magnetic field and the forces, become
more visible. And this is the motivation of the
current work.
Starting from the solution of the Laplace equati-
on of the magnetic scalar potential Φ of an annu-
lar air gap as shown in Fig. 1, the analytic equati-
ons for the magnetic flux density are derived. In
the next step the mechanical stress is formulated.
Finally, an integration has to be performed to get
the force and the torque.



2 Scalar Potential in Polar Coordinates

The magnetic flux density is derived from a sca-
lar potential Φ:

B(r,ϕ) = µ0 ·grad Φ(r,ϕ) (1)

For the annular airgap polar coordinates are used,
hence there is a radial component Br and a tan-
gential component Bt of the magnetic flux densi-
ty:

Br = µ0 ·
∂Φ

∂ r
(2)

Bt = µ0 ·
1
r
· ∂Φ

∂ϕ
(3)

Since scalar potential is only unique defined in
simply connnected areas an artifical boundary
in the airgap with certain boundary conditions
is introduced (see the horizontal dashed line in
Fig. 1). At this boundary the following boundary
conditions are defined to guarantee periodicity
in tangential direction:

Br(r,0) = Br(r,2π) (4)
Bt(r,0) = Bt(r,2π) (5)

Since the magnetic flux density needs to fulfil
second Maxwell Law div B= 0, we get straight-
forward the following Laplace equation in polar
coordinates:

∂ 2Φ

∂ r2 +
1
r
· ∂Φ

∂ r
+

1
r2 ·

∂ 2Φ

∂ϕ2 = 0 (6)

For the solution of the Laplace equation (6)
the method of separation of variables is used.
This leads to two independent differential equa-
tions:

∂ 2F
∂ϕ2 +m2 ·F = 0 (7)

r2 · ∂
2R

∂ r2 + r · ∂R
∂ r
−m2 ·R = 0 (8)

The first one is the well kown equation for
undamped vibrations, while the second one
is Cauchy-Euler equation. The detailed solu-
tion is shown in [1] and [2]. For m > 0 we
get:

Fm(ϕ) = am · cos(mϕ)+bm · sin(mϕ) (9)

Rm (r) = cm · rm +dm · r−m (10)

And for m = 0:

F0 (ϕ) = a0 +b0 ·ϕ (11)
R0 (r) = c0 +d0 · ln(r) (12)

The complete solution for the magnetic scalar
potential is:

Φ(r,ϕ) = (c0 +d0 · ln(r)) · (a0 +b0 ·ϕ)

+
∞

∑
m=1

cmrm [am cos(mϕ)+bm sin(mϕ)]

+
∞

∑
m=1

dm

rm [am cos(mϕ)+bm sin(mϕ)]

(13)

In Eq.13 are two sums, which look very similar
to the result of a fourier transformation. Addi-
tionaly, there is a simple radial dependence of
the potential. The terms in the first sum of the po-
tential increase with∼ rm, in the second sum the
terms decrease proportionally with ∼ r−m. This
second relation is nothing else than the equation
for a 2m-pole in the plain model. For example,
the equation for an dipole (m=1) is according to
[3]:

Φ =
d
r
[acos(ϕ)+bsin(ϕ)] (14)

The corresponding potential is shown in Fig. 2
For the next order m = 2 we get the potential for

Fig. 2: Potential of a dipole (m = 1)

a quadrupole, shown in Fig. 3. The first sum in
Eq.13 gives a increasing potential with increa-
sing radius. In case of m = 2 (quadrupole) we



Fig. 3: Potential of a quadrupole (m = 2)

have a proportionalitiy of Φ ∼ r2 (see Fig. 4),
which is the inverse of the first term. So we will
call it the inverse quadrupole or generally spea-
king: the inverse m-pole.

Fig. 4: Potential of an inversed quadrupole (m = 2)

Φ(r,ϕ) =
∞

∑
m=1

rm ·Cm · sin(mϕ +αmc)+
∞

∑
m=1

r−m ·Dm · sin(mϕ +αmd)

(15)

Cm =

√
(cm1am1 + cm2am2)

2 +(cm1bm1 + cm2bm2)
2

(16)

Dm =

√
(dm1am1 +dm2am2)

2 +(dm1bm1 +dm2bm2)
2

(17)

αmc = arctan
cm1am1 + cm2am2

cm1bm1 + cm2bm2
(18)

αmd = arctan
dm1am1 +dm2am2

dm1bm1 +dm2bm2
(19)

Both, a particular m-pole and the inverse m-pole
have the same factors am,bm in Eq.13. These
factors correspond to a phase, that implies they
have the same direction in space. But depending
on the actual boundary conditions, a potential of
m-th order can be a superposition of m-poles and
inverse m-poles of any phase. It can be shown,
that any superposition of potentials of m-th or-
der can be again separated in two sums, one sum
containing the m-pole, the other on containing
all inverse m-poles. For the sake of limited space,
we refrain from showing the proof, but we intro-
duce a different notation for the potential, which
is shown in Eq. 15.
In the follwing also the zero terms F0 and R0
from Eq.13 are neglected. Even though the case
b0 6= 0;d0 = 0 describes the well known case of
the magnetic field around a single current carry-
ing wire, we are convinced that these cases are
minor important.

3 Maxwell stress tensor in 2D

The gradient of the potential yields the flux den-
sity (Eq. 21 and 22). With the known field com-
ponents, each point in space can be assigned a
mechanical stress. The equations for the radial
stress σr and the tangential stress σr for the plain
model are according to [4]:(

σr

σt

)
=

1
2µ0

(
B2

r −B2
t

2 ·BrBt

)
(20)

The integration over the tangential stress σt re-
sults in the torque.



Br (r,ϕ) =µ0

∞

∑
m=1

m ·Cm · rm−1 · sin(mϕ +αmc)−µ0

∞

∑
m=1

m · 1
rm+1 ·Dm · sin(mϕ +αmd)

(21)

Bt (r,ϕ) =µ0

∞

∑
m=1

m ·Cm · rm−1 · cos(mϕ +αmc)+µ0

∞

∑
m=1

m ·Dm ·
1

rm+1 · cos(mϕ +αmd)

(22)

BrBt (r,ϕ) = µ
2
0

∞

∑
m=1

∞

∑
n=1

m ·n · [CmCn · r+m+n−2 · sin(mϕ +αmc) · cos(nϕ +αnc) . . .

+CmDn · r+m−n−2 · sin(mϕ +αmc) · cos(nϕ +αnd) . . .

−DmCn · r−m+n−2 · sin(mϕ +αmd) · cos(nϕ +αnc) . . .

−DmDn · r−m−n−2 · sin(mϕ +αmd) · cos(nϕ +αnd) ]
(23)

For the force a further transformation into carte-
sian system needs to be done:

σx = σr cosϕ−σt sinϕ (24)
σy = σr sinϕ +σt cosϕ (25)

Solving this equations (20 - 25) requires the cal-
culation of the products of radial and tangential
components of the magnetic flux density. Here
as an example only the product BrBt is shown in
eq. 23.

4 Torque

Integration along a closed line (2D) yields a for-
ce, here an radial and a tangential force. The
latter yields the torque in an electrical machi-
ne:

T =
1

2µ0
rla
∫ 2π

0
2 ·Br ·Btrdϕ. (26)

la stands for the axial direction. This integral
contains the product of both field components
(Br,Bt), resulting in a double sum (see Eq.23).
We don’t want to show the details, rather explain
the principles. In the expression are products of
type:

sin(mϕ +αmc) · sin(nϕ +αnd) (27)

These kind of products can be splitted in-
to two sums using an addition theorem
[5]:

0.5 · cos([m−n]ϕ +αmc−αnd)−
0.5 · cos([m+n]ϕ +αmc +αnd) (28)

These sums can be easy integrated and yield
due to the integration limits (0,2π) always ze-
ro, except in the case m = n. After performing
all the integration steps we get for the tor-
que:

T =
2πrla

µ0

∞

∑
m=0

m2

r2 CmDm sin(αmc−αmd)

(29)

This equation (29) shows, that only field waves
of the same order yields a contribution to the tor-
que. Further the equation contains no products
of type C2

m and D2
m any more. That means only

m-poles and the according inverse m-poles con-
tributes to the torque. Simply spoken: One dipol
itself creates no torque - second inverse dipole
is necessary.

5 Forces

For the calculation of forces the following inte-
grals needs to be solved:

Fx =
1

2µ0

∫ 2π

0
[σr cos(ϕ)−σt sin(ϕ)]rdϕ

(30)

Fy =
1

2µ0

∫ 2π

0
[σr sin(ϕ)+σt cos(ϕ)]rdϕ

(31)

We show the solutions steps using the force
Fy, the steps for FX are analogous. In terms



of field components, the equation is as fol-
lows:

Fy =
r

2µ0

∫ 2π

0

[(
B2

r −B2
t
)

sin(ϕ)
]

dϕ (32)

− r
2µ0

∫ 2π

0
[2 ·Br ·Bt cos(ϕ)]dϕ (33)

Here, contrary to the torque, 3 double sums ha-
ve to be solved: B2

r ,B
2
t and BrBt . These dou-

ble sums contain products of following ty-
pe:

cos(mϕ +αmc)cos(nϕ +αnd)sin(ϕ)
(34)

These kind of products can be again splitted into
sums using an addition theorems [5], the result
is shown in eq 35:

+
1
4

sin([−m+n+1]ϕ−αmc +αnc)

+
1
4

sin([+m−n+1]ϕ +αmc−αnc)

+
1
4

sin([−m−n+1]ϕ−αmc−αnc)

+
1
4

sin([+m+n+1]ϕ +αmc +αnc) (35)

These sums again can be easy integrated and
yield due to the integration limits (0,2π) always
zero, except in the case n = m±1. Because of
these special cases we split the mentioned double
sum as follows:

∞

∑
m=1

∞

∑
n=1

=
∞

∑
m=1

∞

∑
n=1

n6=m±1

+
∞

∑
m=1

n=m+1

+
∞

∑
m=2

n=m−1

(36)

The first term will be equal to zero. The fol-
lowing expressions only have to be summed
over m. The last sum starts with m = 2, sin-
ce the sum over n starts at 1 and n = 0 not

exist.

Fy = µ0

∞

∑
m=1

m(m+1)
π

2
. . .(

+r2mCmCm+1 sin(αmc−αm+1c)

− r−2CmDm+1 sin(αmc−αm+1d)

− r0Cm+1Dm sin(αmd−αm+1c)

−r−2m−2DmDm+1 sin(αmd−αm+1d)
)

+µ0

∞

∑
m=2

m(m−1)
π

2
. . .(

+r2m−2CmCm−1 sin(αmc−αm−1c)

− r0CmDm−1 sin(αmc−αm−1d)

− r−2Cm−1Dm sin(αmd−αm−1c)

−r−2mDmDm−1 sin(αmd−αm−1d)
)

(37)

This expression can further reduced, by starting
the second sum at m = 1 again. Therefore in
the second sum all m need to be replaced by
m+1.

Fy = µ0

∞

∑
m=1

m(m+1)
π

2
. . .(

r2mCmCm+1 sin(αmc−αm+1c)

+ r−2CmDm+1 sin(αmc−αm+1d)

− r0Cm+1Dm sin(αmd−αm+1c)

− r−2m−2DmDm+1 sin(αmd−αm+1d)

− r2mCm+1Cm sin(−αm+1c +αmc)

− r0Cm+1Dm sin(−αm+1c +αmd)

+ r−2CmDm+1 sin(−αm+1d−αmc)

+r−2m−2Dm+1Dm + sin(−αm+1d +αmd)
)

(38)

This can be further reduced and finally, we get
for the force:

Fy = µ0

∞

∑
m=1

m(m+1)
π

2
. . .

(−Cm+1Dm sin [αmd−αm+1c]

+r−2CmDm+1 sin [αmc−αm+1d]
)

(39)

This equation (39) shows, that only the combi-
nation of a m-pole (Cm) and an inverse m-pole
(D2

m±1) results in a force contribution. The m-
poles itself deliver no contribution, as well as the
inverse m-poles. Despite to the torque, the field
waves need to be of ±1 order.



6 Conclusions

The analytical solution for the forces of a ma-
gnetic bearing and the torque of an electrical
machine is presented. It was shown, that the ma-
gnetic field can be represented as a superpositon
of m-poles and inverse m-poles. This means that
any magnetic field in the annular air gap can be
decomposed into these components. While for
the torque only field waves of the same order
(n = m) yield a contribution, for the forces field
waves, whose orders differ by n = m±1, yield
a resulting force.
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