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Matrices are denoted by boldface upper-case letters and vectors by boldface
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ad, bd Inverse inductance d-axis coefficients
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c0 Coefficient linking the inductances to the force constants

Dm, Ds, DM Displacement dependency matrices

dc, ec Continuous-time observer coefficients

dz, ez Discrete-time observer coefficients

Fs Radial force vector in stationary coordinates
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Fx1, Fx2 Traction forces of individual linear machine units

Fy1, Fy2 Attraction forces of individual linear machine units

g0 Nominal air gap of the machine
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]
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Symbols

i, j Radial position in rotor coordinates

i Stator current vector in rotor coordinates

is Stator current vector in stator coordinates

it Torque-producing current vector in rotor coordinates

if Force-producing current vector in rotor coordinates

iα, iβ Stator current components in stator coordinates

iA, iB, iC Stator phase currents

iA1, iB1, iC1 Phase currents of the first star connection

iA2, iB2, iC2 Phase currents of the second star connection

id, iq Stator current components in rotor coordinates

ifA, ifB, ifC Force components of the phase currents

ifd, ifq Force-producing current components in rotor coordinates

i′fd, i′fq Force-producing current components used for control

itA, itB, itC Torque components of the phase currents

itd, itq Torque-producing current components in rotor coordinates

im Equivalent MMF of the PMs

im0, bm, b′
m Equivalent PM MMF coefficients

J Orthogonal rotation matrix
[

0 −1
1 0

]
J Total moment of inertia

K, KI, KT Flux-linkage controller gain matrices

K(θ) Coefficient used to model the rotor saliency

K fb Levitation controller state-feedback gain vector

k1, k2, kI Levitation controller gains

Ld, Lq Main winding direct- and quadrature-axis inductances

Ld0, Lq0, Ls0 Self-inductances of the proposed eccentricity model

Lm, Ls Main- and suspension-winding inductance matrices

Lq,0, a, b Coefficients of the q-axis inductance function

Ls Suspension-winding inductance
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Symbols

Ls,0, c, d Coefficients of the suspension-winding inductance function

l1, l2 State observer gains

M Radial force constant matrix

Md, Mq Radial force constants

Md,0, e, f Coefficients of the force-constant function

m Rotor or mover mass

O Zero matrix
[

0 0
0 0

]
p Number of rotor pole pairs

R Stator-winding resistance

Rm, Rs Main- and suspension-winding resistances

s Laplace-domain variable

TM Motor torque

Ts Sampling time of the outer control loop

Tsc Sampling time of the inner control loop

t Time

uf Force-producing voltage vector in rotor coordinates

ut Torque-producing voltage vector in rotor coordinate

vx, vy Linear velocities in stationary coordinates

W Magnetic field energy

w0 Magnetic field energy due to the leakage fluxes

x, y, z Position in stationary coordinates

xI Integral state vector of the flux-linkage controller

y1, y2 y3, y4 Air gaps of individual linear machine units

z Time-shift operator
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Symbols

αc Bandwidth of the inner control loop

Γd, Γq Inverse inductances

γ Rotor saliency coefficient

ΔFy Differential attraction force

Δy Differential air gap

θ Spatial angle along the air gap

ϑM Mechanical angular position of the rotor

ϑm Electrical angular position of the rotor

ΣFx Total thrust force

τ Pole pitch of the linear machine rail

φr PM remanent flux

ψd, ψq Flux-linkage components in rotor coordinates

ψf Force-producing flux-linkage vector in rotor coordinates

ψfd, ψfq Force-producing flux-linkage components

ψt Torque-producing flux-linkage vector in rotor coordinates

ψtd, ψtq Torque-producing flux-linkage components

ωM Mechanical angular speed of the rotor

ωm Electrical angular speed of the rotor
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1. Introduction

1.1 Background

Most of the present-day electric energy conversion—be it generation or
consumption—is performed by electric machines: motors and generators
[1]. Electric motors are a ubiquitous feature for much of the world’s pop-
ulation: from home appliances and air conditioning systems to electric
vehicles and elevators. The industrial application of electric drives is also
quite common, including, for example, gas and liquid pumps, compressors,
blowers, turbines, machine tools, and robotics. The growing demand for
more sustainable energy conversion has led to extensive research efforts
towards increasing the energy efficiency of electric drives.

One important advantage of electric motors is reliability. However, there
is one component that experiences continuous mechanical wear, which
are the mechanical bearings utilized for supporting the rotating shaft. A
substantial amount of electrical-machine faults are caused by failure in
mechanical bearings. As such, these bearings often require maintenance,
which in some applications may be rather difficult and expensive to perform
and may result in equipment downtime and additional costs. Mechanical
bearings can be a source of audible noise, vibrations, and additional friction
losses—issues, which are usually exacerbated without proper maintenance
and lubrication. In some applications (e.g., food production, chemical pro-
cessing, and medical devices), the use of oil-based bearing lubricant can
be an issue due to oil contamination. In heating, ventilation, and air con-
ditioning systems, oil contamination may impede thermal transfer and
result in decreased efficiency [2].

In recent years, high-speed rotating machines have been getting in-
creased attention in, e.g., compressors, turbines, turbomolecular pumps,
blowers, spindles, and flywheels energy storage systems. For the same
power rating, a high-speed motor can be smaller and, thus, achieve higher
power densities and have a more efficient material utilization. Moreover,
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Stator Rotor

Motor
AMB AMB AMB

(a)

Axial
AMB

Bearingless
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Radial
AMB

(b)

Figure 1.1. Comparison of magnetically levitated drive systems supported by (a) AMBs
and (b) a bearingless motor in conjunction with AMBs.

a direct-drive solution eliminates the need for mechanical transmission
elements and improves reliability. However, bearings are often a limiting
factor in high-speed applications. The expected lifetime of a conventional
bearing is roughly inversely proportional to the rotational speed and the
load of the motor shaft [3]. For example, in modern exhaust gas turbocharg-
ers, the shaft reaches rotational speeds of up to 300 000 r/min. In this
application, roller bearings are responsible, along with their lubrication,
for up to approximately 80% of system failures [4].

One attractive alternative to mechanical bearings is a magnetic suspen-
sion. In rotating machinery, active magnetic bearings (AMBs) are the most
represented technology that utilizes magnetic levitation. An AMB consists
of an electromagnetic force actuator supplied by a power amplifier, which
is actively controlled based on the rotor position feedback. By adding a
negative feedback control system, the AMB generates forces that are able
to support the weight of the shaft, reject external disturbances, and result
in a stable, contact-free levitation. For example, Fig. 1.1(a) shows a typical
arrangement of AMBs required for a complete levitation of a rotating shaft
in five degrees-of-freedom (DOF). Two radial AMBs and an axial AMB
are required to support the shaft. A conventional electric motor is used
for torque production. However, the drawbacks of AMBs are mainly due
to their high cost, complexity, and size. This arrangement also requires a
substantial amount of power electronics to supply the active components.
Systems with AMBs also necessitate an increased shaft length, which
leads to a reduced critical speed of the machine.

One step towards a more integrated solution involves combining the
functions of an AMB together with an electric machine. Such an electric
machine that can simultaneously generate both the driving torque and
controlled radial force for levitation is called a bearingless machine. The
name self-bearing motor also appears in the literature. Other less common
terminologies include levitated motor, floating actuator, and integrated or
combined motor bearing.

Fig. 1.1(b) illustrates a magnetically levitated system where the function
of one radial AMB is performed by the bearingless motor. The benefits of
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Figure 1.2. Example of a fully levitating bearingless slice motor. Axial displacement and
tilting are passively stabilized by the axial force Fstab and torque Tstab.

this arrangement include a shorter shaft and fewer power semiconductor
devices required for the supplying power electronics. Bearingless motors
can typically achieve a higher force production capability than that of
AMBs, due to a larger active surface area [5]. The higher level of mechani-
cal integration results in the drive system being easier to assemble, design,
and service. Moreover, less coils need to be wound during the manufac-
turing process. Finally, bearingless machines can be supplied by widely
available three-phase inverters, while AMBs usually require custom power
electronics.

Apart from the applications where a bearingless machine can replace
one or more of the AMBs, there are also bearingless topologies that offer
completely contactless operation without the need for additional AMBs.
One noteworthy example of such a topology is a so-called bearingless
slice motor [6]. The name comes from the fact that such motors have
a disc-shaped rotor with a small ratio of axial length to diameter. This
allows the air-gap fields to passively stabilize the rotor’s tilting and axial
degrees of freedom, as shown in Fig. 1.2. Only the rotation and radial
movements then require active control [7]. Bearingless slice motors have
garnered commercial interest in centrifugal pumps and mixing devices for
semiconductor manufacturing, bioreactors, and medical applications [8].

1.1.1 Rotating Bearingless Motors

For a rotating bearingless machine, the basic principle is disrupting the p
pole-pair field in the air gap with a p±1 pole-pair field. The concept was
first introduced in the 1970s in [9] and [10]. However, the possibility for
further development only appeared in the 1980s with the ability to apply
modern power electronics, digital signal processors, and field-oriented
control theory. To the best of the author’s knowledge, the term "bearingless
motor" was first utilized in 1988 in a conference paper [11]. The recent
advancements in the field of bearingless motors are nicely summarized in
a number of review papers [12], [13], and [14].

Many different types of bearingless motors have been presented in the
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literature over the years. Permanent magnet (PM) machines have been a
popular bearingless machine type, especially in the category of slice motors.
Bearingless induction machines have also received a considerable amount
of attention, usually for high power applications [12]. Less attention has
been given to switched reluctance, synchronous reluctance, homopolar, and
other bearingless machine types.

Conventional synchronous reluctance machines (SyRMs) have recently
received increased attention and are successfully competing with induction
motors in terms of efficiency, torque-per-ampere ratio, and power density
[15], [16]. The performance of PM machines is usually superior to that of
SyRMs, specifically with regards to the power factor and power density.
However, machines without PMs have inherent advantages, such as lower
cost, easily adjustable excitation, higher temperature tolerance, and no
risk of demagnetization. Typically, SyRMs have not been considered for
use as high-speed machines due to insufficient rotor robustness. However,
recent developments suggest that both transversally laminated machines
[17], [18] as well as solid rotor construction machines [19], [20] can be
suitable in certain high-speed applications.

In the category of rotating bearingless machines, the scope of this disser-
tation is limited to the SyRM topology. In bearingless SyRMs, the required
p and p±1 pole-pair fields can be generated using different winding con-
cepts. These concepts can be broadly divided into two major categories:
separated windings and combined windings.

Separated Windings
Separated windings is the oldest and most common winding type in bear-
ingless machines [21], [14]. For this winding type, the fundamentals of
field-oriented vector control and the decoupling of the torque and force
production were developed in [22] and [23].

In this approach, two physically separate winding sets are placed into the
stator slots and are fed by separate inverters. This winding type features a
simple selection of currents for independent torque and force production
and is suitable for high rotation speeds, since the suspension winding
does not experience the rotation-induced back electromotive force (EMF).
However, installing two windings in the stator slots results in a more
difficult manufacturing process. Another disadvantage of this winding type
is the inefficient use of the slot space, as part of the slot is occupied by the
suspension winding conductors and cannot be used for producing torque.

Combined Windings
The term "combined winding" denotes the combining of the torque and
force production within one winding system. There are several combined
winding approaches, which all share a common feature—being able to
utilize all of the stator slot space for both the torque and the radial force
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production. This reduces the copper losses [7] and allows the control sys-
tem to dynamically allocate the winding for torque-producing current or
force-producing current, depending on the requirements of the situation.
However, these windings require a modified control scheme to select proper
current references and decouple the torque and force production.

Combined multiphase winding utilizes multiple phases to simultaneously
generate two magnetic fields with different numbers of pole pairs. It is also
referred to as "split winding" in [5], [24], [25] or "divided winding" in [26],
[27]. This winding type is first described in [10]. The multiphase winding
can have one neutral point or two separate neutral points. Combined
multiphase winding is often used in low-power bearingless slice motors
[14]. The main advantages of a multiphase winding are in the effective
utilization of copper and simpler manufacturing. However, in this winding
configuration, the rotation back-EMF lowers the voltage available for
controlling the force production, which negatively affects the levitation
control performance at higher speeds [28].

A solution to the back-EMF-related issues has been proposed with so-
called "no-voltage winding" [29]. The name comes from the fact that there
is no back-EMF voltage visible from the suspension inverter terminals.
No-voltage windings can be realized with either a bridge winding configu-
ration [30], [31] or with parallel windings [32]. These approaches merge
the advantages of the separated windings and the combined multiphase
windings. However, it introduces more complexity in the required power
electronics [33].

The scope of this dissertation includes rotating bearingless SyRMs with
separated windings and with combined multiphase windings.

1.1.2 Linear Bearingless Motors

The bearingless concept is also applicable in linear machines. Linear levita-
tion systems have been successfully utilized in magnetic levitation (Maglev)
train systems for many years. However, in Maglevs, the levitation system
is usually separate from the propulsion system [34]. A linear bearingless
machine system combines both functions in the same magnetic circuit. This
can be achieved by exploiting the fact that in addition to the desired thrust
force, linear machines always produce an attraction force between the rail
and the mover. When a pair of linear motor units is placed opposite each
other with their rails mechanically fixed together, it becomes possible to
produce a net normal force in both directions by controlling the attraction
force of each motor unit. Levitation can be achieved by active control of
the net normal force based on the air-gap feedback. At the same time, both
motor units can contribute to the required thrust force production.

Fig. 1.3 shows an example configuration that is able to provide active
levitation in four DOF while also producing thrust force in the x-direction.
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Figure 1.3. Example of a linear bearingless system. The four-sided configuration allows
the mover assembly to maintain active levitation in four DOF by controlling
the normal forces Fy of each machine unit. Each machine unit also produces
thrust force Fx for propulsion in the x-direction.

Eight motor units have their mover parts attached together in a four-sided
configuration around the rail. The directions of the thrust force Fx and the
normal force Fy are shown for one machine unit.

Different linear machine types can be utilized in a linear bearingless
system. For long-stroke applications, such as urban rail transit or ropeless
elevator systems, an important factor is the complexity and price of manu-
facturing a long rail. A flux-switching permanent-magnet (FSPM) machine
has neither windings nor PMs on the rail side. On that side, electrical
steel is the only active material required, while both windings and PMs
are placed in a relatively short mover. In addition, this machine type fea-
tures comparatively high power density and close to sinusoidal back-EMF
voltages. The scope of this dissertation includes linear bearingless FSPM
machines.

1.2 Objective and Outline of the Dissertation

Bearingless machines offer advantages in a high level of integration. How-
ever, this comes at the price of a high degree of complexity in designing,
modeling, and controlling such systems. An inherently unstable nature,
magnetic cross-coupling, air gap variation, and nonlinear effects contribute
to the technical challenges of implementing bearingless systems. Efficient
and reliable control requires accurate knowledge of the machine behavior
in all possible operating points. This fact makes mathematical machine
models an important tool for control system design, estimation purposes,
time-domain simulations, and robustness analyses.

Consequently, the aim of this dissertation is to develop dynamic mod-
els and model-based control systems for bearingless SyRMs and linear
bearingless FSPM machines. The development of the dynamic models is
focused on the following points:

• Proper modeling of the cross-coupling effects between the motoring
and levitation functions.
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• Modeling of nonlinear effects due to magnetic saturation. SyRMs and
FSPM machines are often operated in the nonlinear region of the BH
curve. If not taken into account, the effect of saturation causes the
machine to behave inconsistently throughout its operating range.

• Proper modeling of air gap variation. Air gap variation in bearingless
machines is a common phenomenon at lift-up or during operation, e.g.,
due to mass imbalance or bending modes of the rotor. An unaccounted
for inductance change and unbalanced magnetic pull (UMP) due to
air gap variation can deteriorate the performance of the model-based
control systems and even lead to instability in the worst case scenario.

• Developed models should be general enough to be applicable to var-
ious machine designs, be physically consistent, and represent the
actual machine accurately enough for control design purposes.

• The models are developed based on the machine analysis through
finite-element method (FEM) simulations.

The proposed modeling methods are utilized as a basis for the contribu-
tions in control design. The control system development in this dissertation
focuses on model-based control methods. State-feedback controllers are
developed for both the inner and outer control loops. Proper controller
tuning is a topic that is not extensively covered in the literature. Often,
tuning is performed using trial-and-error methods, while improper tuning
of the feedback controller may result in poor performance or levitation
instability. In this dissertation, analytical tuning rules for each developed
controller are given.

The dissertation consists of an overview and seven publications. The
goal of the overview is to outline an overall perspective on modeling and
control of bearingless SyRM and FSPM linear machines and to briefly
present the most important contributions of the publications. Chapter 2
reviews the mathematical dynamic models of the considered bearingless
machines. Chapter 3 presents the design of the model-based cascaded
control system, discusses pole placement considerations, and presents ex-
perimental levitation control results. Chapter 4 describes the experimental
setups applied for testing. Chapter 5 shows example experimental results
of active levitation control. New experimental results which have not been
previously published are also presented1. Chapter 6 presents the abstracts
of the publications and a summary of the scientific contributions of this
dissertation. Chapter 7 provides some concluding remarks. Finally, the
publications included in this dissertation are reprinted at the end.

1Due to time limitations, these experimental results have not been included in
the enclosed publications, but the related modeling and control contributions have
been.
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2. System Modeling

This chapter focuses on the mathematical models of bearingless machines.
The main purpose of the modeling approaches discussed here is to be
applicable in control design.

These models can be broadly divided into two categories: the mechanical
subsystem and the electromagnetic subsystem. The main focus of the
dissertation is related to the modeling of the electromagnetic phenomena.
Section 2.1 presents mechanical modeling and outlines a simple mechanical
model used for all machines throughout the dissertation. Sections 2.2, 2.3,
and 2.4 focus on the modeling of electromagnetic phenomena, including
electrical dynamics, saturation characteristics, displacement modeling,
and force production principles.

Two bearingless machine types are in the scope of this dissertation:
rotating SyRMs (with separated and combined windings) and linear FSPM
machines. First, the common aspects of both machine types are discussed.

2.1 Mechanical Models

The mechanical models of rotating and linear machines are shown in Fig.
2.1. The mechanical movement of the rotor (or mover in the case of linear
machines) is modeled throughout the dissertation using a single-mass
model. This assumes a rigid structure with no elasticity and no bending.
Another assumption is that there is no cross-coupling between the control-
lable mechanical degrees of freedom. This means that in rotating machines,
the rotation of the shaft and the displacements in the x- and y-axes are de-
coupled mechanical states. In linear machines, this means that the thrust
(x-axis) and normal (y-axis) direction movements are independent of each
other. Therefore, equations describing the displacement dynamics can be
derived from Newton’s second law of motion:

m
dvx

dt
= Fx +Fx,d

dx
dt

= vx (2.1)
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Figure 2.1. Single-mass model of the generic (a) linear and (b) rotating bearingless ma-
chines. Coordinate systems and mechanical degrees of freedom are shown.

m
dvy

dt
= Fy +Fy,d

dy
dt

= vy (2.2)

where m is the total mass of the rotor; Fx and Fy are the forces generated
by the bearingless motor; Fx,d and Fy,d are the external disturbance forces,
e.g., gravity; and vx and vy are the linear velocities. As a side note, the
forces Fx and Fy typically change as a function of the x and y displacement
in a way that makes the electromechanical system open-loop unstable.
Moreover, the force expressions are often nonlinear.

For rotating machines, the rotational dynamics are given as follows:

J
dωM

dt
= TM −TL

dϑM

dt
=ωM (2.3)

where J is the total moment of inertia; ϑM is the angular position of the
shaft; ωM is the angular speed of the motor; TM is the motor torque; and
TL is the load torque.

The mechanical model for linear bearingless machines is described by
equations (2.1) and (2.2). Equations (2.1), (2.2), and (2.3) describe the
mechanical model for rotating bearingless machines. These models are
used as a basis for designing and tuning the levitation and rotation control
loops in Chapter 3. However, the described single-mass model leaves out
some important phenomena, that are worth keeping in mind:

• When rotating machines are considered in three dimensions, there is
a cross-coupling between the tilting around the x and y axes due to
the gyroscopic effect [5]. This effect becomes more important at high
rotation speeds and with high rotor inertia, for example, in the case
of a disk-shaped rotor or a flywheel.

• Every real-world rotor has some degree of imbalance due to the man-
ufacturing tolerances. Such mass imbalance produces a disturbance
with a frequency proportional to the rotation speed ωM and an ampli-
tude proportional to ω2

M [35]. Proper modeling and compensation of
this disturbance can help reduce the rotor orbit during operation.
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• In high-speed applications, the rotation speed may approach and
even surpass the critical speed of the rotor. Such cases require higher
fidelity models that include rotor flexing and can predict the bending
modes of the system [36].

• Rotational dynamics can vary between different applications and de-
pend on the driven load. To take into account more complex rotational
mechanics, bearingless motors can make use of the same modeling ap-
proaches as the conventional electric motors, e.g., modeling torsional
dynamics [35] or a multi-mass system [37].

• In real linear bearingless systems, the rail and the mover are not
perfectly rigid. Due to high attraction forces between the rail and the
mover, bending of either can occur and introduce resonant frequen-
cies. Knowing these frequencies is important in order to design the
controllers in a way that does not excite resonances.

2.2 Space Vectors

Real space vectors are used throughout the dissertation as a basis for
the electrical machine analysis. Boldface lowercase letters are used to
denote vector quantities, and boldface uppercase letters are used to denote
matrices.

SyRMs and FSPM machines with three-phase winding systems are stud-
ied in this dissertation. The three-phase winding is either delta-connected
or star-connected without a neutral wire. Therefore, the zero-sequence
component is absent, and the three-phase system can be represented with
an equivalent αβ model. For example, the three-phase currents iA, iB, and
iC can be transformed into the αβ components using the Clarke transfor-
mation:

is =
[

iα
iβ

]
=
[

2
3 −1

3 −1
3

0 1�
3

− 1�
3

]⎡⎢⎢⎣
iA

iB

iC

⎤
⎥⎥⎦ (2.4)

where the superscript s denotes the vector in stator coordinates with the
orthogonal components α and β. The space vectors for the voltages and the
flux linkages are defined similarly.

Electrical machines are often analyzed in the rotating coordinate system,
since the sinusoidally varying quantities in stator coordinates become DC
quantities in rotor coordinates.

In bearingless machines, magnetic fields with different numbers of pole
pairs may be present in the machine at the same time. Hence, the vectors
in stator coordinates are transformed into the rotor coordinates by rotating
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Figure 2.2. Coordinate systems of a bearingless SyRM and the reluctance rotor con-
struction: (a) with salient poles and (b) with multiple flux barriers. Stator
coordinates are denoted with blue lines, and rotor coordinates are denoted
with red lines.

them with the electrical angle ϑm = pϑM, where p is the number of pole
pairs. This means that the resulting vectors are rotating synchronously
with their respective fields. For example, the current components can be
transformed into the rotor coordinates using

i =
[

id

iq

]
= e−ϑm J is =

[
cos(ϑm) sin(ϑm)

−sin(ϑm) cos(ϑm)

][
iα
iβ

]
(2.5)

where J = [
0 −1
1 0

]
is the orthogonal rotation matrix. Vectors in rotor coordi-

nates are denoted with no superscript and have d and q orthogonal compo-
nents. Similar transformations can be applied to the flux linkages and the
voltages. For linear machines, the same transformations apply. In linear
machines, ϑm depends on the thrust-direction position x as ϑm = 2πx/τ,
where τ is the pole pitch of the rail.

For machines with a sinusoidal magnetomotive force (MMF) distribution
in the air gap, applying the dq model makes flux linkages and inductances
appear constant during steady-state operation. For well-designed SyRMs
and FSPM machines, it is a reasonable assumption [38], [39]. However, it
is worth noting that in real-world machines, the MMF distribution always
differs to some degree from a perfect sine wave. The resulting spatial
harmonics can cause torque and force ripple, which may require additional
compensation. Machine-specific modeling is discussed in the following
sections.

2.3 Rotating SyRMs

A synchronous reluctance machine is an alternating-current (AC) machine
that has neither PMs nor conductors in the rotor and relies only on the
magnetic saliency of the rotor to produce torque. Two typical reluctance
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rotors are shown in Fig. 2.2: one with salient-pole construction and one
with internal flux barriers. SyRMs feature an inexpensive rotor construc-
tion, high efficiency, and comparatively high torque density, although they
generally have a lower power factor as compared to PM machines [40].

One of the attractive application areas of bearingless SyRMs is flywheel
energy storage. Here, an important advantage of SyRMs as compared to
PM machines is the ability to turn off the field completely, which eliminates
the idling losses [41]. Recent developments in composite materials have
allowed allowed for an increase in the energy density of the flywheels.
A composite rotor is able to withstand high centrifugal stress and, thus,
can reach high rotation speeds. The kinetic rotation energy is given as
Wkin = 1

2 Jω2
M, which makes it easy to see why increasing the rotation speed

ωM has a significant contribution to the amount of stored energy. This fact
motivated the development of high-speed flywheels with rotation speeds
from 10000 to 100000 r/min [42]. High rotation speed requires solving
challenges related to the lifetime of bearings [43]

Publication I studies the thermal performance of a flywheel energy stor-
age system. The ability of the electrical machine rotor to withstand high
temperatures as well as low rotor losses are important aspects in this
application, which makes the bearingless SyRM an attractive solution
[44].

In the literature, bearingless SyRMs were first introduced in the begin-
ning of the 1990s with [45], [46]. Numerous papers on the topic have been
published since, but bearingless SyRMs have received less attention as
compared to the surface-mounted PM or induction machine types [12]. A
slice motor version of the bearingless SyRM was first studied in [47] and
showed comparable performance to other slice motor types.

The coordinate systems used for modeling the bearingless SyRMs are
shown in Fig. 2.2. The machines with two-pole-pair rotors are given as an
example, but the same basic principles apply for other pole-pair numbers.
The mechanical quantities are described in xy coordinates in the stator
reference frame and in i j coordinates in the rotor reference frame. Three-
phase electrical quantities are modeled in αβ and dq coordinates for the
stator and rotor reference frames, respectively. The rotor d-axis in SyRMs
is aligned with the path of lowest reluctance.

Bearingless operation with SyRMs is achieved by having the winding
system produce a p and p±1 pole-pair fields in the air gap. The p pole-
pair field corresponds to the number of rotor pole pairs and is used for
generating torque, and a p±1 pole-pair field is used for generating the
radial suspension force.

Fig. 2.3 illustrates the principle of torque and force production. As an
example, a SyRM with a four-pole rotor is considered. The current vector
it generates the four-pole field (shown in red), which is used for torque
production. In the case shown in Fig. 2.3, it is aligned with the d-axis,
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Figure 2.3. Principle of torque and force production in an example bearingless SyRM. The
current vector it that generates the torque-producing flux is shown in red,
and if that generates the force-producing flux is shown in blue. The current
vectors are adjusted such that the resulting force vector Fs is constant, while
the rotor is (a) at 0 angle and (b) rotated by ϑM.

which magnetizes the machine while not generating torque. It is important
to note that a non-zero magnetization is necessary to generate the radial
force because it acts as a bias flux in the air gap in which the unbalance
can be generated. This unbalance in the four-pole flux is generated by the
two-pole flux (shown in blue). The two-pole flux can be seen to strengthen
the four-pole flux in the upper section of the machine while weakening it
in the lower section. This results in a magnetic pull on the rotor, generated
in the upwards direction, denoted with the force vector Fs. For bearingless
motor operation, the current vectors it and if can be adjusted to generate
the required torque and force at any rotor angle. Fig. 2.3(b) shows that
when the rotor is rotated by the angle ϑM, the current vector it has to be
rotated synchronously with the rotor in order to keep the same torque
production and magnetization level, while the current vector if has to be
rotated by 2ϑM in order to produce the same force vector Fs.

In order to generate the two magnetic fields required for the torque and
force production, different winding concepts can be used, as introduced
in Section 1.1. In the scope of this dissertation are bearingless SyRMs
with separated windings and with combined multiphase windings. The
proposed modeling approaches are presented for the machines with four-
pole main and two-pole suspension fields, but they can be easily extended
to machines with other numbers of poles.

2.3.1 Separated Windings

In this winding concept, two three-phase windings are placed separately
into the stator slots. The main winding carries the torque-producing cur-
rent it, while the suspension winding carries the force-producing current if.
The number of pole pairs of the main winding p equals the number of pole
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Figure 2.4. Example of a three-phase bearingless SyRM with separated windings, shown
with equivalent two-phase windings. Each phase winding is sinusoidally
distributed along the air gap, while only the center of the conductors is shown.
Crosses and dots denote the positive direction of the current.

pairs of the reluctance rotor, while the suspension winding is designed with
p±1 pole pairs. An example bearingless SyRM with a four-pole main wind-
ing and a two-pole suspension winding is shown in Fig. 2.4. Three-phase
windings are modeled with equivalent two-phase windings.

The most widely acknowledged textbook model of bearingless SyRMs
with separated windings is presented in [5] and [48]. The model is described
below and is considered to be a baseline for further development.

Currents, flux linkages, and voltages are transformed into synchronous
coordinates using (2.4) and (2.5). The electrical angle is used in the transfor-
mations, which is ϑm = 2ϑM for main-winding-related values, and ϑm =ϑM

for suspension-winding-related values. In synchronous coordinates, the
voltage equations of the main winding and the suspension winding are
given as follows

dψt
dt

= ut −Rmit −2ωMJψt (2.6a)

dψf
dt

= uf −Rsif −ωMJψf (2.6b)

where Rm and Rs are main winding and suspension winding resistances,
and voltage vectors are defined as ut =

[
utd utq

]T and uf =
[
ufd ufq

]T. The
current vectors and the flux-linkage vectors are defined similarly. Linear
magnetics are assumed, and the flux linkages of the main winding ψt and
the suspension winding ψf are[

ψt

ψf

]
︸ ︷︷ ︸

ψ

=
[

Lm M

MT Ls

]
︸ ︷︷ ︸

LΣ

[
it

if

]
︸︷︷︸

i

(2.7)

with the inductance matrices given as

Lm =
[

Ld 0

0 Lq

]
, Ls =

[
Ls 0

0 Ls

]
, M =

[
Md i −Md j

Mq j Mq i

]
(2.8)
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where Ld, Lq are the main winding d- and q-channel inductances; Ls is the
suspension-winding inductance; and Md and Mq are radial-force constants
(H/m). The radial-force vector in stationary xy coordinates is defined as

Fs =
[

Fx

Fy

]
= eϑM J

[
Md itd Mq itq

Mq itq −Md itd

]
if (2.9)

It can be seen in the equation above that because of saliency the force
production is coupled with the torque production due to the terms Mq itq.
This somewhat complicates the control system design, as compared to the
non-salient machines. The electromagnetic torque is defined in the same
way as for the conventional SyRMs

TM = 3(ψtd itq −ψtq itd)= 3(Ld −Lq)itd itq (2.10)

The flux produced by the suspension winding can also influence the torque
production, but this effect is usually neglected.

The textbook model presented above has the following limitations:

• The inductances are derived by first approximating the inverse air-
gap length of an eccentric rotor with a series expansion of cosine
function and using it further to define the permeance function of the
air gap. Only the first term is included in the series expansion; hence,
the obtained analytical small-signal model is valid only in the vicinity
of the centric operating point.

• Since the inductances have no dependency on the rotor displacement,
the UMP is not included in the model.

• The model assumes no cross-coupling between the main and suspen-
sion windings when the rotor is centric, since the cross-coupling term
appears in (2.8) only when i and j are non-zero.

• Assuming constant Md and Mq results in a linear force/current rela-
tionship, which may not be the case in a real motor due to saturation.

• The assumption of linear magnetics results in neglecting the self-
saturation and the cross-saturation between the main and suspension
windings.

To introduce the UMP into the model, [5] proposes to model the in-
ductance variation due to the rotor radial displacement with additional
second-order equations. However, this adds complexity to the model and
requires tuning of additional unbalanced pull coefficients. Moreover, this
method does not guarantee that the power balance is respected in the
model.

In [49], analytical inductance models including rotor saliency and eccen-
tricity are derived. The saliency of the rotor is taken into account by using
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a piecewise defined inverse air gap length, making it a more elaborate way
to derive the inductances. However, only the first term is included in the
series expansion, resulting in an inaccurate approximation when using the
model to predict the UMP.

In [50], the saturation effects coming from the motor currents are investi-
gated. Variation in force constants due to the changing itq were taken into
account in the control system by using a decoupling compensator. In [51]
the saturation is taken into account using a simple magnetic model and
measured magnetization curve. However, both of these works do not pro-
pose appropriate changes to the dynamic motor model and lack a method
for quantifying the saturation effects.

In [52], a model order reduction method based on orthogonal interpolation
is used to model a bearingless SyRM including saturation and eccentricity.
However, the study does not discuss the implications of the saturation and
eccentricity as they relate to modeling and control design. In addition, the
method is not suitable to be generalized for different motor designs.

Publication II investigates the magnetic saturation phenomena using
the FEM and proposes an explicit-function-based magnetic model for bear-
ingless SyRMs. The saturation characteristics are analyzed in more detail
than in the previous studies, including self-saturation and cross-saturation.
Suitable explicit functions are proposed to model the most notable depen-
dencies. Additionally, current controllers based on explicit-function and
constant parameters are compared using time-domain simulations.

Publication IV investigates the rotor eccentricity-related phenomena and
proposes an improved dynamic model that more accurately represents
eccentric operation. The model is based on the inverse air gap length
approximation and takes the rotor saliency into account. The proposed
model includes more terms in the series expansion, which allows it to
inherently include the UMP effect in the calculated radial forces. The model
is compared against the FEM results and against the textbook model. A
straightforward linear least squares (LLS) fitting method to obtain the
parameter values of the proposed model is also presented. Parameterizing
the proposed model requires no radial force data, since the model predicts
the radial forces by using the magnetic circuit parameters as a basis.

The proposed saturation modeling and eccentricity modeling approaches
are considered separately, i.e., a modeling approach combining both phe-
nomena at once is left for future research. The contributions to saturation
and eccentricity modeling from Publication II and Publication IV are briefly
reviewed in the following subsections.
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2.3.2 Saturation Modeling

Instead of assuming a linear magnetic circuit as in (2.8), the flux linkages
are modeled as a function of currents

ψ(i)=
[
ψt(it, if)

ψf(it, if)

]
=

⎡
⎢⎢⎢⎢⎢⎣
ψtd(itd, itq, ifd, ifq)

ψtq(itd, itq, ifd, ifq)

ψfd(itd, itq, ifd, ifq)

ψfq(itd, itq, ifd, ifq)

⎤
⎥⎥⎥⎥⎥⎦ (2.11)

The model assumes a lossless magnetic field and omits spatial harmonics.
Hence the model does not include dependencies on rotor speed or angular
position. The functions in (2.11) can be characterized using the FEM. A set
of static FEM simulations is performed, which covers the entire possible
operating range of the machine in terms of allowable currents.

Each simulation is characterized by the supplied current combination
(itd, itq, ifd, ifq). Operating points are pre-defined by changing the currents
one by one in fixed steps to cover the entire possible operating range of the
machine. The rotor is kept centric and at zero angle in order to leave out
the phenomena related to the eccentricity and spatial harmonics. From
the resulting magnetic field solutions, the flux linkages (ψtd,ψtq,ψfd,ψfq) as
well as the radial forces Fx, Fy and torque TM are calculated.

A set of 2D magnetostatic FEM simulations in 9000 pre-defined operating
points was carried out for an example 4.7-kW bearingless SyRM. The
FEM simulations were carried out using COMSOL Multiphysics software.
Details of the studied machine design are presented in Section 4.1. Selected
dependencies based on the FEM results are presented with 3D plots in
Fig. 2.5.

Influence of the Main-Winding Current
The effects of the main-winding current components itd, itq are demon-
strated in Figs. 2.5(a–d). The d-channel of the main winding shows neither
the self-saturation nor the cross-saturation, as can be seen in Fig. 2.5(a).
Ld shows less than 6% variation throughout the whole operating region
and, thus, can be considered to be constant. However, in the q-channel,
clear self-saturation can be seen between itq and ψtq, shown in Fig. 2.5(b).
Self-saturation in the q-channel is due to the thin iron flux bridges in the
rotor, which saturate already at low values of itq. The lack of magnetic
saturation in the d-channel in this example SyRM is due to a rather large
air-gap length of 1 mm. The suspension-winding flux linkages ψfd and
ψfq experience the cross-saturation from the main-winding q-axis current
component itq. This phenomenon is demonstrated for ψfq in Fig. 2.5(c).

Since the radial forces are obtained from each FEM simulation, the radial-
force constants Md, Mq can also be analyzed as a function of currents at
each operating point, by calculating them from (2.9). Both Md and Mq show
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(a) (b)

(c) (d)

(e) (f)

Figure 2.5. Flux linkages and radial force constants as functions of the current com-
ponents: (a) ψtd(itd, itq); (b) ψtq(itd, itq); (c) ψfq(itd, itq); (d) Md(itd, itq); (e)
ψtd(ifd, ifq); and (f) ψfd(ifd, ifq). (a), (b), (c), and (d) are plotted at ifd = ifq =
0.75 A, while (e) and (f) are plotted at itd = 12.5 A and itq = 40 A. FEM-based
results are shown with black crosses, while the surfaces show the results cal-
culated from the magnetic model (2.12). In (e), only FEM results are displayed
to show that ψtd remains nearly constant irrespective of ifd and ifq.
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Table 2.1. Magnetic model parameters of an example machine.

Parameter Lq,0 [mH] a [mH] b [1/A2] Ls,0 [mH] c [mH/A2] d [1/A2]

Value 2.7 6 0.006 37.3 1.3 0.07

Parameter Md,0 [H/m] e [H/(m·A2)] f [1/A2] Ld [mH] Mq [H/m]

Value 31.28 0.18 0.026 15 0.66

strong dependency on the main winding currents. Fig. 2.5(d) shows Md

as a function of itd and itq. Because Md dominates the overall radial force
production, the variation in Mq has a minor effect and can be omitted.

Influence of the Suspension-Winding Current
Based on the FEM results, the cross-saturation between the suspension-
winding currents and the main-winding flux linkages is minimal, as demon-
strated in Fig. 2.5(e). Hence, the suspension-winding currents are assumed
to have no influence on the main-winding inductances Ld and Lq. Fig.
2.5(f) shows that the suspension winding exhibits no self-saturation and no
cross-saturation behavior between its current and flux-linkage components.
Thus, the suspension winding inductance Ls depends only on the main
winding currents.

Explicit-Function-Based Magnetic Model
Based on the findings from the FEM analysis, an explicit-function-based
magnetic model is proposed. The form of the explicit functions applied here
for the saturation modeling was initially proposed in [53]

ψtd(itd)= Ld itd ψtq(itq)= Lq(itq)itq (2.12a)

ψfd(itq, ifd)= Ls(itq)ifd ψfq(itq, ifq)= Ls(itq)ifq (2.12b)

Lq(itq)= Lq,0 + a
1+bi2

tq
Ls(itq)= Ls,0 −

ci2
tq

1+di2
tq

(2.12c)

Md(itq)= Md,0 −
ei2

tq

1+ f i2
tq

Ld = const Mq = const (2.12d)

where Lq,0, Ls,0, Md,0, a, b, c, d, e, and f are the coefficients of the induc-
tance and force-constant functions. Flux linkages as functions of current
components are expressed with (2.12a) and (2.12b). The saturating in-
ductances are given as (2.12c). Finally, the radial force constant Md as a
function of itq is modeled with (2.12d) using the same function form as the
inductances. The force constant Mq and the inductance Ld are assumed to
be constant.

The coefficients of the explicit functions can be obtained by fitting the
model to the FEM-based or measured data. Here, the model is fitted to the
FEM-based results of the example bearingless SyRM, and the resulting
coefficients are given in Table 2.1. The resulting explicit functions (2.12) are
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plotted against the corresponding FEM results in Fig. 2.5 for comparison.
Based on these plots, it can be concluded that the form and the fitting of
the proposed explicit functions result in a suitable magnetic model for the
example bearingless SyRM.

2.3.3 Eccentricity Modeling

The effects of the magnetic saturation are ignored in the following. When
a cylindrical rotor surface is assumed and the rotor is displaced from its
centric point to a certain x and y position, the air gap length at the angle θ

can be given as a cosine function within a complete revolution (θ = 0. . .2π)

g(θ, x, y)= g0 − xcos(θ)− ysin(θ) (2.13)

where g0 is the nominal air gap of the motor. Then, the permeance function
is given as

P(θ, x, y)=μ0rl g−1(θ, x, y) (2.14)

where r is the rotor radius; l is the axial length; and μ0 is the permeability
of air. The permeance function can then be used to define the air-gap
flux distribution and finally to obtain the inductances by integrating the
product of MMF and corresponding flux linkage over the circumference of
the air gap [5]. However, the inverse air-gap function is required in order
to be able to use the permeance function for calculation of the inductance
matrices elements. The exact analytical inverse air-gap function would
result in a complicated integration. Instead, the inverse air-gap function
can be approximated using series expansion

g−1(θ, x, y)= K(θ)
g(θ, x, y)

≈ K(θ)
g0

⎛
⎜⎜⎜⎝1+

[
x
g0

cos(θ)+ y
g0

sin(θ)
]

︸ ︷︷ ︸
first term

+
[

x
g0

cos(θ)+ y
g0

sin(θ)
]2

︸ ︷︷ ︸
second term

+·· ·

⎞
⎟⎟⎟⎠ (2.15)

where the coefficient K(θ) is used for modeling the rotor saliency. The more
terms are considered in the expansion, the more accurately it models the
actual inverse air-gap length. The textbook model is obtained if only the
first term of the series expansion is considered, which becomes a limiting
factor when predicting the radial forces, as is shown below. Moreover, in
the textbook model, K(θ)= 1, since the rotor saliency is neglected.

Proposed Model
Publication IV proposes an improved model which includes the effects
of eccentricity, rotor saliency, and UMP. The proposed model is briefly
reviewed below. Since assuming a cylindrical rotor for a SyRM is not
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Figure 2.6. Inverse air-gap length calculated numerically compared to the different levels
of approximation with (2.15). The nominal air gap of the motor is g0 = 1 mm.

realistic, the coefficient K(θ) is used to take the rotor saliency into account.
Similarly to [49], the coefficient K(θ) is piecewise defined as

K(θ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0, γ< θ < π
2 −γ

0, π
2 +γ< θ <π−γ

0, π+γ< θ < 3π
2 −γ

0, 3π
2 +γ< θ < 2π−γ

1, otherwise

(2.16)

where the constant 0< γ<π/4 defines the saliency of the rotor.
As an example, Fig. 2.6 shows the inverse air-gap length as a function of θ,

when x = y= 0.4 mm and γ= 25◦. The inverse air-gap length is numerically
calculated as an inverse of (2.13) and compared with approximations from
(2.15). From this, it can be seen that the accuracy of the series expansion
substantially increases when more terms are included. Naturally, better
accuracy comes at the price of increased complexity when calculating the
elements of the inductance matrices.

In order to model the rotor displacement, the inductance matrices in (2.7)
are presented as

Lm(x, y)= Lm0Dm(x, y) Ls(x, y)= Ls0Ds(x, y)

M(x, y)= c0Lm0DM(x, y) Lm0 =
[

Ld0 0

0 Lq0

]
(2.17)

where Dm(x, y), Ds(x, y), and DM(x, y) are the displacement dependency
matrices; Ld0, Lq0 are the self-inductances of the main winding; and Ls0
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is the self-inductance of the suspension winding (which should not be
confused with the coefficients Lq,0 and Ls,0 used in the saturation model).
The scalar-valued coefficient c0 =

√
2Ls0/(Ld0 +Lq0)/2 links the inductances

to the force constants. Furthermore, the saliency ratio can be defined as
Ld0

Lq0
= 4γ+sin(4γ)

4γ−sin(4γ)
≈ 3

4γ2 − 2
5

(2.18)

The exact form of the displacement matrices depends on the number of
terms considered in the inverse air-gap approximation. Including only the
first term results in

Dm =
[

1 0

0 1

]
Ds =

⎡
⎣2γ(2g2

0−x2)
πg2

0
−2γxy

πg2
0

−2γxy
πg2

0

2γ(2g2
0−y2)

πg2
0

⎤
⎦ DM = 1

g0

[
x −y

y x

]
(2.19)

Considering a special case with a centric rotor when x = y= 0 results in

Dm =
[

1 0

0 1

]
Ds =

[
1 0

0 1

]
DM =

[
0 0

0 0

]
(2.20)

It is worth noting that the textbook model (2.8) is actually a combination
of (2.19) and (2.20), where Ds is selected from (2.20) and DM from (2.19),
with an additional assumption that Ld/Lq = Md/Mq.

Further, including the second term in the approximation (2.15) gives

Dm = dm =
(

1+ x2 + y2

2g2
0

)
Ds =

[
dx dxy

dxy dy

]
(2.21)

DM = 1
g0

⎡
⎣ 2x(g2

0+y2)
2g2

0+x2+y2
−2y(g2

0+x2)
2g2

0+x2+y2

y(2g2
0−x2+y2)

2g2
0+x2+y2

x(2g2
0+x2−y2)

2g2
0+x2+y2

⎤
⎦

where the full expressions for dx, dy, and dxy are given in Publication IV.
From (2.17) and (2.21), it is evident that the elements of inductance matrix
Lm also depend on x and y when the second term is included.

The stored magnetic co-energy of the system is

W ′
m = 1

2

[
iT

t iT
f

][ Lm0Dm c0Lm0DM

c0Lm0DT
M Ls0Ds

][
it

if

]
(2.22)

The radial forces can be calculated as follows

Fx = ∂W ′
m

∂x
= 1

2

(
iT

t Lm0
∂Dm

∂x
it + iT

f Ls0
∂Ds

∂x
if

)

+ c0

2

(
iT

t Lm0
∂DM

∂x
if + iT

f Lm0
∂DT

M
∂x

it

)

Fy = ∂W ′
m

∂y
= 1

2

(
iT

t Lm0
∂Dm

∂y
it + iT

f Ls0
∂Ds

∂y
if

)

+ c0

2

(
iT

t Lm0
∂DM

∂y
if + iT

f Lm0
∂DT

M
∂y

it

)
(2.23)
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(a) (b) Flux density distribution (T)

Figure 2.7. Salient pole rotor SyRM used in 2D FEM simulations. (a) Motor geometry and
mesh. (b) Example magnetic field solution at the rated operating point. The
motor nominal air gap is 1 mm. FEM simulations are performed assuming
linear magnetics.

It is worth noting that the partial derivatives of the displacement matri-
ces in (2.23) define the x and y dependencies of the radial forces. Hence,
including the second term in the inverse air-gap approximation is required
in order to include the effect of the UMP in the model.

Parameter Estimation
The model parameters can be estimated based on FEM or measured data.
Here, FEM-based data sets are used, which are generated using the same
approach as in Section 2.3.2. Additionally, these simulation sets were
carried out at different rotor radial positions. The motor geometry used for
FEM analysis is shown in Fig. 2.7(a). An example magnetic field solution
at the rated radial force and torque is shown in Fig. 2.7(b).

When the flux linkages, currents, and radial forces are obtained from
the FEM at different operating points, the model parameter values can
be calculated by applying the LLS fitting method. LLS can be used for
identifying the parameters of both the textbook model and the proposed
model.

The textbook model (2.8) contains five parameters to be decided: Ld, Lq,
Ls, Md, and Mq. In the textbook model, the force constants are treated
as being independent from the inductances. Thus, parameter estimation
requires two steps. Firstly, one LLS fit is required to obtain the force
constants Md and Mq from the FEM-based force data and (2.9). Secondly,
with Md and Mq fixed, another LLS fit can be used to solve the main- and
suspension-winding inductances from (2.7) and (2.8).

As an example, the textbook model parameters are obtained from two
FEM simulation sets: one with the rotor at x = 0 and y=−0.6 mm, imitating
the rotor resting on the safety bearings, and one with the centric rotor at
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Table 2.2. Parameter estimates of the textbook model (2.8).

Parameter (x = 0, y=−0.6 mm) (x = y= 0)

Ld (mH) 17 14.5

Lq (mH) 10.4 8.9

Ls (mH) 239 220

Md (H/m) 57 40

Mq (H/m) 34 22

Table 2.3. Parameter estimates of the proposed model (2.17).

Parameter (x = 0, y=−0.6 mm) (x = y= 0)

Ld0 (mH) 14.4 14.5

Lq0 (mH) 8.8 8.9

Ls0 (mH) 281 284

γ (deg) 34.7 34.9

c0 2.46 2.47

x = 0, y = 0. The parameter values identified for both of these cases are
compared in Table 2.2. Here, it can be seen that the identified textbook
model parameters vary depending on the rotor radial position that was
used when fitting the data.

In contrast to the textbook model, the proposed model (2.17) does not re-
quire the radial force data to solve all the necessary parameters. Fitting of
the proposed model is performed solely based on (2.7) with inductance ma-
trices (2.17) and displacement matrices (2.21). The data from the FEM is
now used in two consecutive LLS fits. Firstly, the main-winding inductance
matrix is solved from the operating points in which the suspension-winding
current is set to zero. The main-winding inductances are then used to cal-
culate γ from (2.18). Secondly, the suspension-winding inductance matrix
can be solved from the operating points in which the main-winding cur-
rent is set to zero. Finally, the scalar-valued coefficient c0 can be solved
as c0 = √

2Ls0/(Ld0 +Lq0)/2. The detailed fitting procedures for both the
textbook model and the proposed model are described in Publication IV.

The parameters of the proposed model are estimated in the same radial-
position operating points as with the textbook model and using the same
FEM data sets. The results are given in Table 2.3. It can be seen from the
table that when the proposed model is used, the fitted parameter values
are almost independent from the rotor radial position.

39



System Modeling

(a) (b)

(c) (d)

Figure 2.8. Flux linkage ψtd and radial force Fx as functions of radial position x at y= 0: (a),
(b) itd = 20 A and itq = ifd = ifq = 0; (c), (d) itd = 20 A, itq = 0 and ifd = ifq = 2 A.

Comparison of Models against FEM Results
The proposed model is compared against the textbook model and against
the FEM results in Fig. 2.8. The models are parameterized from Table 2.2
and Table 2.3 with values corresponding to the centric rotor case. Using
the parameterized models, the flux linkages and the radial forces are
calculated using (2.8), (2.9), (2.17), and (2.23) at the same current and
radial position operating points as the ones simulated in FEM.

Fig. 2.8(a) shows the flux-linkage component ψtd as a function of radial
position x at y= 0. Fig. 2.8(b) shows the corresponding radial force Fx. It
can be seen that in the textbook model the main-winding flux-linkage
variation due to the radial displacements is not modeled. This results in
an inability to predict the radial forces due to the UMP. The proposed
model inherently includes these effects and improves the accuracy of the
predicted radial forces without the use of additional functions. Similar
behavior can be seen in Fig. 2.8(c) and Fig. 2.8(d) when the suspension-
winding current ifd = ifq = 2 A is also supplied. The accuracy of the proposed
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model can be further increased by including three or more terms in the
series expansion (2.15). However, this would result in a significant increase
in the complexity of the model; hence, the selected model is a compromise
between complexity and accuracy.

2.3.4 Combined Multiphase Winding

The textbook model of bearingless SyRMs as well as the saturation and
eccentricity modeling presented in the previous sections are directly appli-
cable only to machines with separated windings.

In machines with combined multiphase windings, the torque-producing
and force-producing currents are superimposed into the same coils. Ap-
proaches to superimpose the torque-producing and force-producing cur-
rents are available in the literature. Selection of current references for
decoupled torque and force generation is presented for a toroidal PM ma-
chine in [54]. In [27] and [24], the current reference selection and modeling
of a bearingless induction machine with combined multiphase winding is
discussed. In [55], similar current selection methods are presented for a
parallel combined winding. A current reference selection method is pre-
sented for a bearingless slice SyRM in [47], and the torque and force
equations are derived. However, to the best of the author’s knowledge,
dynamic models that are directly applicable for bearingless SyRMs with
combined windings have not been presented in the literature before.

Publication V proposes a method to link the textbook model of the bear-
ingless SyRM with separated windings to the machines with a combined
multiphase winding. The method allows for the extension of the modeling
concepts from Sections 2.3.2 and 2.3.3 to bearingless SyRMs with combined
windings. The proposed theory is validated by means of FEM simulations
and experimental results. The proposed linking method and FEM-based
validation from Publication V are briefly presented below.

Linking Method
To describe the method, an example six-phase bearingless SyRM is con-
sidered with the winding diagram shown in Fig. 2.9(a). The phases are
marked as A1, B1, C1, A2, B2, C2 and represent either a center coil of a dis-
tributed winding or a single coil of a concentrated winding. Six phases can
be connected into two independent star connections [A1, B1, C1] and [A2,
B2, C2], which allows the motor to be supplied with two general-purpose
three-phase inverters.

For a SyRM with a four-pole rotor, the described winding system has
to produce a four-pole field to generate the torque and a two-pole field to
generate the radial force. The four-pole MMF is generated when both three-
phase windings are supplied with the same current, i.e., [iA1, iB1, iC1] =
[iA2, iB2, iC2]. The two-pole MMF is generated in the case when the three-
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C1

B1

B2

C2

A1A2

(a) (b)

Figure 2.9. (a) Six-phase combined winding arranged into two three-phase star con-
nections; (b) 2D FEM geometry and magnetic field solution of an example
combined winding bearingless SyRM. Four-pole and two-pole fields are pro-
duced simultaneously by supplying the currents [iA1, iB1, iC1, iA2, iB2, iC2] =
[5,−2.5,−2.5,3,−1.5,−1.5] A or itd = 4 A, ifd = 1 A, and itq = ifq = 0 at ϑM = 0.

phase windings are supplied with the same value but opposite sign currents
[iA1, iB1, iC1] = [−iA2,−iB2,−iC2]. Thus, for a given current in each phase
pair, e.g., iA1 and iA2, the torque-producing component can be defined as
itA = (iA1 + iA2)/2, and the force-producing component can be defined as
ifA = (iA1− iA2)/2. The same definitions are applied to other phases resulting
in

itA = iA1 + iA2

2
itB = iB1 + iB2

2
itC = iC1 + iC2

2

ifA = iA1 − iA2

2
ifB = iB1 − iB2

2
ifC = iC1 − iC2

2

(2.24)

The torque and force current components can be selected independently
of each other to produce the four- and two-pole-pair fields, respectively.
Hence, for modeling purposes, the torque and force current components in
the combined winding are the same as the currents flowing in the main
and in the suspension windings of a separated winding machine.

Due to the absence of the zero-sequence current, an equivalent two-phase
αβ model can be utilized. The torque current component vector is

t can be
obtained from itA, itB, and itC directly by applying (2.4). However, the force
current component vector is

f is obtained using a reversed phase sequence

is
f =

[
ifα

ifβ

]
=
[

2
3 −1

3 −1
3

0 − 1�
3

1�
3

]⎡⎢⎢⎣
ifA

ifB

ifC

⎤
⎥⎥⎦ (2.25)

since, for the force component, the counterclockwise phase sequence is seen
as ACB, while for the torque component, it is ABC.
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M

(2.10)
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(b)

Figure 2.10. Comparison between the model and the FEM-based results: (a) torque as
a function of ϑM at itd = itq = 6 A and (b) radial forces at itd = 2 A and ϑM,
varying from 0 to π/2.

Finally, the resulting space vectors can be transformed into synchronous
coordinates using (2.5), where ϑm = 2ϑM for the torque component and ϑm =
ϑM for the force component. This gives current vectors it =

[
itd itq

]T and
if =

[
ifd ifq

]T, which can be used to model the machine in rotor coordinates.
Similar transformations, as the ones presented for the currents, can be
used for voltages and flux linkages. As a result, the textbook model (2.6),
(2.7), (2.8), (2.9), and (2.10) can be applied for modeling the combined
winding bearingless SyRMs. The resulting dynamic model is applicable in
time-domain simulations, model-based control design, stability analysis,
and in real-time control algorithms.

FEM-based Validation of the Method
The applicability of the textbook model to bearingless SyRMs with com-
bined multiphase windings is verified using the FEM. 2D magnetostatic
FEM simulations were carried out using FEMM 4.2 software. FEM sim-
ulations are carried out for an example bearingless slice motor shown in
Fig. 2.9(b). The details of the motor design are presented in Section 4.2.
Fig. 2.10 shows the comparison between the torque and radial forces pre-
dicted by the textbook model and FEM-based results. The model is able to
predict the average torque and radial force throughout the varying rotor
angle, which confirms the proposed transformations.

2.4 Linear FSPM Machines

A linear FSPM bearingless machine is a complicated system to model
due to multiple reasons: flux paths that change as the machine travels in
the x-direction; PM leakage fluxes that cross the air gap and contribute
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to the force production; typically substantial saturation effects, which
result in nonlinear behavior; and changing air gap during operation, which
influences the magnetics and the force production of the machine.

Various analytical and semi-analytical models have been presented for
machine design and analysis purposes. Rotating bearingless FSPM ma-
chines have been developed in [56]. Nonlinear current to force and torque
relationships have been modeled and taken into account in the control
system presented in [57]. However, few concepts can be carried over from
rotating to linear bearingless FSPM machines. Analytical models for con-
ventional linear FSPM machines have been developed in [58], [59], and
[60]. These models, however, are insufficient for bearingless applications,
since the air gap variation and the normal force production are essential
phenomena to be included in the modeling of a bearingless linear ma-
chine. In [61], a linear bearingless FSPM machine is studied using the
FEM, including the force production characteristics, air-gap variation, and
magnetic saturation. However, the proposed modeling approach relies on
FEM-based data implemented in the form of lookup tables, which makes it
difficult to generalize the model for other machine designs. Furthermore,
the model of the machine is not presented independently from the control
method.

Publication VII proposes a dynamic model for bearingless FSPM linear
machines based on a physically feasible equivalent circuit. A magnetic
equivalent circuit is used to derive the structure of the analytical equa-
tions describing the magnetic model and the force production. Using the
FEM, the magnetic characteristics of an example three-phase machine are
studied in detail, including the influence of the air gap variation, magnetic
saturation, and linear movement position along the rail. A simple method
for parameterizing the model from the FEM or measured data is presented.
The model is also validated by means of experiments.

The proposed model from Publication VII and its validation using FEM
simulations and experiments are reviewed below.

2.4.1 Generic Dynamic Model

Similar to the rotating variants, linear FSPM machines can be modeled
and controlled using two-axis models [59]. The three-phase currents can be
transformed into αβ coordinates using (2.4), with similar transformations
applicable to the voltages and flux linkages.

The key phenomena of three-phase FSPM linear machines can be bet-
ter visualized and explained by using a conceptual two-phase machine.
Fig. 2.11 shows a two-phase machine with a simple 4-slot/5-pole structure
and visualizes the flux paths of the PMs at two mover positions. At the
mover position x = 0, the PM flux links predominantly with the coils of the
α-phase, while no PM flux links with the coils of the β-phase. The polarity
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y

Figure 2.11. Conceptual two-phase FSPM linear machine with the mover at x = 0 and
at x = τ/2. The arrows show the polarities of the PMs. The crosses and dots
define the positive direction of the coil currents. The phases α and β are
labeled above the corresponding coils. The dominant flux paths due to the
PMs are sketched. The leakage flux paths are shown with the dashed lines.

of the α-phase flux linkage is reversed, as the mover travels to x = τ/2.
There are also PM leakage fluxes which do not link with the windings and,
thus, cannot be seen at the machine terminals. However, they cross the
air gap and contribute to the magnetic field energy and the normal force
production.

The FSPM machine is modeled in dq coordinates by transforming the
currents with (2.5) and applying the same transformations to the voltages
and flux linkages. In well-designed linear machines, the flux linkages vary
almost sinusoidally, and the spatial harmonics and the end effects are
minor. Therefore, the model in the dq coordinates is assumed independent
of x, and the magnetic model is of the form

id = id(ψd,ψq, y) iq = iq(ψd,ψq, y) (2.26)

Flux linkages are chosen as independent state variables, which simplifies
the inclusion of the magnetic saturation and results in the most simple
voltage equation form

dψd

dt
= ud −Rid +ωmψq

dψq

dt
= uq −Riq −ωmψd (2.27)

where ωm = (2π/τ) · (dx/dt) is the electrical angular speed.
The core losses of the machine are omitted, although if required they

could be separately taken into account. Applying the assumption of a
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Figure 2.12. Block diagram in the dq coordinates representing a generic dynamic model
of a bearingless linear machine.

lossless magnetic field, the rate of change of the magnetic field energy is

dW
dt

= id

(
dψd

dt
−ωmψq

)
+ iq

(
dψq

dt
+ωmψd

)
−Fx

dx
dt

−Fy
dy
dt

(2.28)

It is worth noting that the magnetic field energy W is generally nonzero at
ψd =ψq = 0 because of the PM leakage fluxes. The thrust and normal forces
can be derived from the magnetic field energy [39], [62]. Further assuming
no x dependency, this results in the following expressions

Fx = 2π
τ

(ψd iq −ψq id) (2.29a)

Fy =−∂W(ψd,ψq, y)
∂y

(2.29b)

Although the air gap y is not directly visible in (2.29a), the thrust-force
production depends on the air gap value via the current components (2.26).

The presented equations comprise a generic dynamic model for a bear-
ingless linear machine, represented with a block diagram in Fig. 2.12.
The model of the electrical subsystem can be easily augmented with a
mechanical model with forces Fx, Fy as inputs and the speeds vx, vy as
outputs.

2.4.2 Magnetic Model and Force Production

The magnetic model in Fig. 2.12 is derived for FSPM linear machines by
using equivalent magnetic circuits. Since the PM flux links only with the
d-axis winding, the currents (2.26) can be written in a more specific form

id =Γd(ψd,ψq, y)ψd − im(y) (2.30a)

iq =Γq(ψd,ψq, y)ψq (2.30b)

where Γd and Γq are the inverse inductances and im is the equivalent MMF
of the PMs seen from the terminals. All of these functions depend on the
air gap y. The inverse inductances depend on the flux linkages due to the
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Figure 2.13. Magnetic equivalent circuit of the conceptual machine. The reluctance above
the tooth is bt y, and the reluctance of the slot is as +bs y, where as, bs, and
bt are assumed to be constants. Unity turns for the coil MMFs are assumed.

magnetic saturation. The magnetic field energy at ψd =ψq = 0 due to the
leakage fluxes is denoted with w0 and also depends on the air gap.

To find suitable and physically feasible expressions for Γd, Γq, im, and
w0, a magnetic equivalent circuit in Fig. 2.13 is considered. The circuit is
formed based on the most significant flux paths of the conceptual machine
shown in Fig. 2.11. The PMs are modeled using the Norton equivalent
circuit [63], consisting of the internal reluctance am and the remanent
flux φr of the magnet, which are both constant. The constant reluctance as

models the reluctance between the rail poles. The reluctances bs y and bt y
depend on the air gap, bs and bt being constants.

In Publication VII, the expressions for Γd, Γq, im, and w0 are derived
using standard circuit theory for the equivalent circuit in Fig. 2.13 while
assuming linear magnetics. However, the resulting rational functions pro-
duce very long force expressions.

To simplify and generalize the model, the rational functions Γd(y), Γq(y),
and im(y) are approximated with their series expansion at y= 0. First-order
expansion is used for the inverse inductances, and second-order expansion
is applied for the equivalent MMF.

Finally, the expressions for the inverse inductances Γd and Γq are aug-
mented with a non-linear reluctance term to model the saturation effects.
This gives the final expressions for the magnetic model

Γd(ψd,ψq, y)= ad +bd y+ cdq(ψ2
d +ψ2

q) (2.31a)

Γq(ψd,ψq, y)= aq +bq y+ cdq(ψ2
d +ψ2

q) (2.31b)

im(y)= im0 +bm y+b′
m y2 (2.31c)

where ad, aq, bd, bq, cdq, im0, bm, and b′
m are constants. For the resulting

model, the reciprocity condition ∂id/∂ψq = ∂iq/∂ψd holds, i.e., the nonlinear
magnetic circuit is lossless [62]. A similar approach to saturation modeling
has been used in [64]. A more elaborate saturation model with separate
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Table 2.4. Fitted model parameters of an example machine.

Parameter ad [1/H] aq [1/H] bd [1/(H·mm)] bq [1/(H·mm)] cdq [1/(H·(Vs)2)]

Value 4.4 4.1 −0.32 −0.21 7.1

Parameter im0 [A] bm [A/mm] b′m [A/(mm)2] fm [kN] cm [1/mm]

Value 3.8 −1.4 0.17 6.0 0.34

Figure 2.14. Geometry of an example three-phase FSPM linear machine. The crosses and
dots define the positive direction of the coil currents.

terms for self-axis and cross-axis saturation can also be employed [65].
The total magnetic field energy corresponding to (2.31) is given as

W = Γd(ψd,ψq, y)ψ2
d +Γq(ψd,ψq, y)ψ2

q

2
− im(y)ψd −

cdq(ψ2
d +ψ2

q)2

4
+w0(y) (2.32)

The field energy w0 is assumed equal to the magnetically linear case. It is
worth noting that despite this assumption, the nonlinear magnetic circuit
is physically consistent

w0(y)= Γd(y)ψd0(y)2

2
+ fm y

1+ cm y
(2.33)

where cm and fm are constants and ψd0(y) is the d-axis flux linkage at id = 0,
i.e., ψd0(y)= im(y)/Γd(y). Following (2.29b), the normal force expression is

Fy =−bd
[
ψ2

d −ψd0(y)2
]+bqψ

2
q

2
+ (bm +2b′

m y)[ψd −ψd0(y)]− fm

(1+ cm y)2 (2.34)

The voltage equations (2.27) together with the magnetic model (2.30),
(2.31) and the force expressions (2.29a), (2.34) describe the magnetic model
of the bearingless FSPM linear machine including the effects of magnetic
saturation and air gap variation.

2.4.3 Model Validation

The parameters of the proposed model depend on the geometry of a specific
FSPM machine. However, the model is intended to be parameterized by
fitting based on either the FEM or measured data. While different fitting
methods are applicable for this task, one example fitting procedure based
on the LLS method is described in Publication VII. Two consecutive fittings
are performed to solve the parameters of the equations (2.31) and (2.34).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.15. Comparison between the FEM results (shown with markers) and the fitted
model predictions (shown with lines): (a) ψd(id) at iq = 0; (b) ψq(iq) at id = 0;
(c) Fy(id) at iq = 0; (d) Fx(iq) at id = 0; (e) Fy(y) at iq = 0; and (f) Fx(y) at id = 0.

In order to validate the proposed model the parameters are fitted into
FEM data of an example FSPM linear machine shown in Fig. 2.14. The
details of the machine construction are presented in Section 4.3. Ansys
Maxwell software is used to carry out magnetostatic 2D FEM simulations.
The FEM data used for fitting is computed by solving the flux linkages
(ψd,ψq) and forces (Fx,Fy) as a function of currents (id, iq) and the air gap y
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Figure 2.16. Mechanical arrangement of a double-sided linear bearingless system. The
traction forces Fx1, Fx2 and the attraction forces Fy1, Fy2 of the two opposing
machine units are shown with arrows.

in predefined operating points (similarly as in Section 2.3.2). The resulting
fitted model parameters are given in Table 2.4.

The results predicted by the proposed model are compared to the FEM-
based results. Figs. 2.15(a) and 2.15(b) show the self-axis saturation char-
acteristics ψd(id), ψq(iq) at three fixed air gap values y. Figs. 2.15(c) and
2.15(d) show the corresponding normal force Fy and thrust force Fx produc-
tion as a function of the current components. It is worth noting that the
forces are not fitted into the FEM force data, but rather they are calculated
with (2.29a) and (2.34) based on the fitted magnetic model parameters
shown in Table 2.4. Finally, Figs. 2.15(e) and 2.15(f) show the variation
of forces Fy, Fx as a function of air gap y changing from 0 to double the
nominal value.

Thus, it can be seen that the proposed model is able to predict the
magnetic behavior and the force production of an example FSPM linear
machine with reasonable accuracy. Additionally, the FEM results presented
in Publication VII show the cross-saturation behavior and also demonstrate
that the forces Fx and Fy are practically independent of the mover x-axis
position. In Publication VII, the attraction force predicted by the model is
compared against the experimentally measured force at different air gaps
and currents. The comparison shows that the proposed model is able to
predict the attraction force reasonably well. The model was also fitted to the
FEM data of another FSPM linear machine design, and the fitting showed
equally good results. Overall, the characteristics of the proposed model are
smooth, predictable, and physically consistent, which is important when
utilizing the model for control purposes.
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2.4.4 Mechanical Model of a Double-Sided Linear System

Previous subsections consider the modeling of a single linear FSPM ma-
chine. However, when used as part of a linear bearingless system, multiple
linear machine units are required to stabilize the necessary degrees of free-
dom, e.g., as shown in Fig. 1.3. For control design purposes, it is beneficial
to define the mechanical model for the whole mover assembly, i.e., multiple
motor units attached together.

Fig. 2.16 shows the simplest double-sided configuration with two ma-
chine units. Configurations with more machine units are typically used to
stabilize additional DOFs, e.g., tilting around the z-axis. However, with a
two-machine configuration, it is only possible to actively control two DOFs:
levitation along the y-axis by controlling the attraction forces Fy1, Fy2 and
propulsion along the x-axis by controlling the thrust forces Fx1, Fx2.

For control design purposes, the double-sided two-machine unit configu-
ration can be treated as one device by defining the total thrust force, the
differential attraction force, and the differential air gap as

ΣFx = Fx1 +Fx2 ΔFy = Fy2 −Fy1 Δy= y1 − y2

2
(2.35)

where y1 and y2 are the air gaps of individual machine units. These defini-
tions are used in the levitation control design, which is discussed in the
next chapter.
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In this chapter, the control system design is discussed. Classical model-
based control theory [66] is applied to bearingless machines. The control
is described as applied to rotating SyRMs and double-sided linear FSPM
machines, but most concepts are also applicable to other machine types.

Control systems are developed in continuous-time domain in Publication
III and Publication V, while a direct discrete-time design is applied in
Publication VI. For digital implementation, continuous-time designs are
discretized with forward Euler approximation. The approximation holds
well when the sampling frequency is at least 10∼20 times higher than the
closed loop bandwidth [67].

The need for active control in magnetically levitated systems arises from
Earnshaw’s theorem. For magnetic fields, the theorem states that it is
not possible to achieve static levitation using any combination of fixed
magnets and electric charges (unless using diamagnetic materials, such
as superconductors). This inherent unstable nature necessitates reliable
active control in order to maintain the levitation of a bearingless system.

In the literature, the aspects of magnetic levitation control are mostly
discussed in relation to AMBs. Some aspects can be carried over to the
control of bearingless machines. However, there are additional control
challenges that are associated with bearingless machines:

• The production of torque and force (or normal force and thrust force
in linear systems) is often coupled due to a shared magnetic circuit
and requires decoupling through an appropriate selection of currents.

• The magnetic circuit of SyRMs and FSPM machines often saturates
during operation, which can make typical linear controllers unable
to provide adequate performance throughout the operating range.

• A possible air gap change during operation has an influence on the
magnetic circuit parameters and in turn on the force production,
requiring additional compensation from the control system.
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Figure 3.1. Overview of the cascaded control system structure.

3.1 Cascaded Control

In this dissertation, a cascaded control system structure is applied. The
overall structure is illustrated with a functional block diagram in Fig. 3.1.
The advantage of the cascaded structure is that each control loop can be
designed and tuned separately. In addition, the signal flow between the
subsystems is clearly visible, which allows the intermediate control signals
to be probed for analysis or manipulated to account for additional effects,
e.g., disturbances or nonlinearities. However, the designer must ensure
sufficient separation between the poles of the inner and outer control loops
to make sure that their dynamics are decoupled.

The plant represents either a bearingless SyRM with separated or com-
bined windings or a bearingless double-sided FSPM linear machine ar-
rangement. The plant is supplied with two three-phase inverters which
in general can have the same or different DC-link supply. Following the
analysis from Chapter 2, the control system is considered in synchronous
coordinates. Current transform and voltage transform blocks are used
as an interface between the phase quantities on the plant side and the
synchronous-coordinate quantities on the control system side. The trans-
formations are based on (2.4) and (2.5), but the exact form depends on the
bearingless machine type.

In a control system of a double-sided FSPM linear machine, (2.4) and (2.5)
can be applied directly to each machine unit to transform the measured
currents, whereas voltage references are transformed back into the stator
coordinates using the inverse of these transformations.

For rotating SyRMs, it is important to note that when the machine is
rotating and a constant radial force is produced in xy coordinates, the
electrical-angular frequencies of both the torque and the force component
currents are the same (see Fig. 2.3). Thus, in order to avoid steady-state
errors, the inner control loop is designed in a coordinate system rotating at
the electrical angular frequency of 2ωM. Both the torque and force current
vectors are rotated by the same angle 2ϑM, resulting in the current vector
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to be controlled i = [itd, itq, i′fd, i′fq]T. Here, i′fd and i′fq can be expressed as[
i′fd
i′fq

]
= e−ϑM J

[
ifd

ifq

]
(3.1)

The same transformation applies both to the measured currents as well as
the reference currents. Detailed transformations used for the control of sep-
arated winding SyRMs are presented in Section IV of Publication III, and
for the control of combined winding SyRMs in Section III of Publication V.

The inner control loop is used to realize the requested current reference
iref = [itd,ref, itq,ref, i′fd,ref, i′fq,ref]

T by receiving the measured current i as feed-
back and controlling the voltage reference uref sent to the inverters. The
current or flux linkage can be selected as a state variable when designing
the controller. When employing a flux linkage controller, the currents i
and iref have to be mapped to the corresponding flux linkages using, e.g.,
lookup tables or explicit functions, as will be discussed further.

The outer control loop consists of a separate levitation controller and a
rotation or propulsion controller for a rotating or linear bearingless system,
respectively. These controllers can be designed and tuned independently of
each other. The levitation controller ensures stable levitation by outputting
a force reference Fref based on the measured rotor/mover position. The
rotation/propulsion controller allows the bearingless machine to operate
in speed-control mode by taking the speed feedback, e.g., as ωm = dϑm/dt,
and outputting the torque reference TM,ref for rotating machines and the
propulsion force reference Fx,ref for linear machines.

The reference calculation block is used to map the mechanical references
from the outer control loop to the current references for the inner control
loop. This is an important part of the control system, which ensures that
the requested forces/torque are actually realized by selecting appropriate
current references. The Reference calculation may also require the rotor/-
mover position and electrical angle information to compensate for the UMP
and angle-dependent torque/force ripple.

In the following sections, each part of the control system is presented.

3.2 Inner Control Loop: Current or Flux-Linkage Controller

The inner control loop sets the dynamic limitation on the outer control
loop. The performance of the inner control loop is especially important
for bearingless machines in order to quickly and independently realize
the requested torque and radial force for suspension. The inner control
loop has to have sufficiently high bandwidth in order to compensate, e.g.,
unbalanced vibration and bending modes in high-speed applications [68],
[69]. In addition, the ability to achieve high bandwidth at low switching
frequencies would allow implementation with general purpose inverters.
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Figure 3.2. Proposed state-space flux-linkage controller structure for bearingless SyRMs.
The controller is in synchronous coordinates and the coordinate transforma-
tions are not shown in the block diagram.

In the literature, the inner control loop is most commonly represented
with a constant parameter current controller. Proportional integral deriva-
tive (PID) type current controllers are used for example in [70], [71], [72],
and [55]. However, little attention is usually given to analytical controller
tuning.

Analytical design rules for a model-based PI-type current controller are
presented in [73] for conventional AC machines. The same principle can
be applied to bearingless machines. However, if a constant parameter
current controller is used for heavily saturating machines, such as SyRMs
and FSPM machines, the controller performance will vary depending on
the operating point. This can be addressed by using, for example, gain
scheduling control or implementing inductance variation in the form of
lookup tables or explicit functions [74]. These approaches can manage
the problem of varying loop bandwidth due to saturation, but they do
not address the cross-coupling between the torque and force components.
Decoupling methods are presented in [50] and [75], but no analytical rules
for the tuning of the current controller are given.

Publication III proposes a model-based analytical design method for a
state-space flux-linkage controller. The method is described as applied
to bearingless SyRMs, but it can be extended to other machine types.
Using the flux linkage as a state variable has multiple advantages: in-
herently taking into account the mutual coupling between the windings;
easier implementation when using a nonlinear magnetic model; and sim-
pler derivation of the controller gain matrices. The flux-linkage controller
design and selected simulation results from Publication III are briefly
presented below.

Fig. 3.2 shows the proposed flux-linkage controller structure. The mea-
sured current vector i = [itd, itq, i′fd, i′fq]T and the reference current vector
iref = [itd,ref, itq,ref, i′fd,ref, i′fq,ref]

T are transformed into the corresponding flux-
linkage estimate ψ̂ and reference flux-linkage ψref using a static mapping
function ψ(i, x, y). The rotor displacement dependency x, y in the mapping
function is optional and can be omitted for simplicity, resulting in the same

56



Control

form as (2.11)

ψ(i)=
[
ψt(it, i′f)

ψf(it, i′f)

]
=

⎡
⎢⎢⎢⎢⎢⎣
ψtd(itd, itq, i′fd, i′fq)

ψtq(itd, itq, i′fd, i′fq)

ψfd(itd, itq, i′fd, i′fq)

ψfq(itd, itq, i′fd, i′fq)

⎤
⎥⎥⎥⎥⎥⎦ (3.2)

The mapping function linearizes the plant as seen by the controller and
decouples the torque- and force-producing components. The mapping can
be defined with FEM-based or measured data and implemented using, e.g.,
lookup tables or explicit functions.

The voltage equations in the synchronous coordinates are defined as

dψ
dt

= u−Ri−Ω(ωM)ψ (3.3)

where

R =
[

RmI O

O RsI

]
Ω(ωM)=

[
2ωMJ O

O 2ωMJ

]

I = [
1 0
0 1

]
is a 2×2 identity matrix, and O = [

0 0
0 0

]
is a 2×2 zero matrix.

Following the internal model control (IMC) principle [73], the open-loop
dynamics of the system are first canceled by using appropriate feedback
compensations. Then, the feedback controller together with the feedforward
compensator are designed to obtain the desired dynamics for the closed-
loop system. The control law is given as

uref =−[K −Ω(ωM)
]
ψ̂+ R̂i+KIxI +KTψref (3.4)

where K, KI, and KT are the controller matrices; R̂ is the resistance matrix
estimate; and the integral state is defined as dxI/dt =ψref −ψ̂.

With accurate parameter estimates and mapping, the resulting closed-
loop system can be shaped to have the desired dynamics. For example, if
first-order dynamics are selected for each of the system states, then the
desired closed-loop transfer-function matrix is

Gc(s)= αc

s+αc
I4 (3.5)

where I4 is a 4×4 identity matrix and αc is the closed-loop system band-
width. The desired closed-loop transfer function is realized by selecting the
controller matrices as

K = 2αcI4 KI =α2
c I4 KT =αcI4 (3.6)

Diagonal control matrices result in the decoupled closed-loop dynamics
of each state variable. By changing (3.5), different closed-loop dynamics
could be selected, e.g., different bandwidths can be chosen for the main and
suspension windings. It is worth mentioning that not only model-based
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control but also other approaches (e.g., [76], [77]) can be applied for the
flux-linkage controller design. For conventional synchronous machines, a
systematic flux-linkage controller design is presented in [78] including a
direct discrete-time design.

3.3 Reference Calculation

The reference calculation methods are discussed separately for rotating
SyRMs and for double-sided FSPM linear machines.

3.3.1 Rotating SyRMs

For bearingless SyRMs, the reference calculation block generates the
current reference iref = [itd,ref, itq,ref, i′fd,ref, i′fq,ref]

T for the inner control loop
based on the torque reference TM,ref and the radial force reference Fref =
[Fx,ref,Fy,ref] coming from the outer control loop. The same reference calcu-
lation methods are applicable for machines with separated windings as
well as combined windings.

The reference calculation can be performed based on the textbook model
described in Section 2.3.1 [5]. When the torque reference is known, the
current references itd,ref and itq,ref can be solved from (2.10), e.g., by ap-
plying the maximum-torque-per-ampere (MTPA) principle. Alternatively,
a constant magnetization itd,ref may be selected, then itq,ref is calculated
from (2.10) as

itq,ref =
TM,ref

3(Ld −Lq)itd,ref
(3.7)

When itd,ref and itq,ref are obtained and the radial force reference Fref is
given, then i′fd,ref and i′fq,ref can be calculated based on (2.9) as

i′f,ref =
[

i′fd,ref

i′fq,ref

]
=
[

Md itd,ref Mq itq,ref

Mq itq,ref −Md itd,ref

]−1[
Fx,ref

Fy,ref

]
(3.8)

In addition, SyRMs with combined windings should respect the upper
limits of i′fd,ref ≤ itd,ref and i′fq,ref ≤ itd,ref, as further increase in force produc-
ing currents would reverse the direction of the flux and lower the radial
force instead of increasing it. SyRMs with separated windings have a simi-
lar upper limit on the force-producing currents, which should be defined
based on the number of turns in the main and suspension windings.

The method of reference calculation presented above relies on the accu-
racy of the textbook model with constant parameters. In Publication III, the
magnetic model from Section 2.3.2 is applied in the reference calculation.
Explicit-function-based parameters (2.12) replace the constant parameters
in (3.7) and (3.8). In this way, the reference calculation accounts for the
variation in inductances and force constants due to the saturation.
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(a)

(b)

Figure 3.3. Simulation results with the proposed flux-linkage controller and the refer-
ence calculation based on (a) a constant parameter magnetic model and (b)
an explicit-function-based magnetic model (2.12). The subplots show with
solid lines the torque TM, the radial forces Fx,Fy, and the flux linkages
ψtd,ψtq,ψfd,ψfq produced by the machine. The respective references from
the control system are shown with dashed lines.
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Fig. 3.3 shows the time-domain simulation results of a model-based
torque and radial force control system. In this simulation, the outer control
loop is left out, and the torque and force references are defined directly
by the user. The reference calculation is performed with (3.7) and (3.8).
The inner control loop is realized with a discrete-time implementation
of the flux-linkage controller, as described in Section IV of Publication
III. The bandwidth of the flux-linkage controller is αc = 2π ·600 rad/s, and
the switching frequency is fsw = 8 kHz. The plant model is based on the
example bearingless SyRM considered in Section 2.3.2. The plant model
consists of voltage equations (2.6) and FEM-based four-dimensional lookup
tables to represent the magnetic model and calculate the produced radial
forces. Motor torque is calculated with (2.10) based on the current and
flux-linkage information.

The simulation sequence consists of stepping the magnetization reference
itd,ref from 0 to 20 A at 0.01 s, stepping the y-axis radial force reference
Fy,ref from 0 to 300 N at 0.02 s, stepping the torque reference TM,ref from 0
to 20 Nm at 0.03 s and back to 0 at 0.05 s, and finally stepping the x-axis
radial force reference Fx,ref from 0 to −200 N at 0.04 s.

Fig. 3.3(a) shows the simulation results when constant parameters
are used in the reference calculation and in the flux-linkage controller.
Fig. 3.3(b) shows the results when an explicit-function-based magnetic
model is applied in the reference calculation and in the flux-linkage con-
troller. As can be seen from this comparison, using explicit-function based
parameters in the reference calculation reduces the steady-state error in
the torque and the radial force as compared to using constant parameters.
Using an explicit-function-based magnetic model in the mapping function
ψ(i) of the flux-linkage controller means that the controller tuning is not
affected by the magnetic saturation. Hence, the controller performance
remains the same throughout the operating range of the machine in terms
of allowable currents.

Reference calculation methods presented thus far do not take into account
the rotor eccentricity. An eccentric rotor results in changing magnetic
model parameters and also introduces UMP, which can be thought of as
a disturbance force. The change in magnetic model parameters can be
accounted for in the static mapping function of the flux-linkage controller
ψ(i, x, y) as well as in the reference calculation process by introducing the
dependency of the parameters in (3.7) and (3.8) on x and y. If the UMP can
be quantified in real-time, it can be compensated simply by subtracting the
x and y components of the UMP from the corresponding force references
Fx,ref and Fy,ref used in (3.8).

Moreover, the eccentricity modeling method presented in Section 2.3.3
can be applied to control design. This would result in the eccentricity
effects being inherently included in the reference calculation. This topic,
however, is left for future research.
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3.3.2 Double-Sided Linear FSPM Machines

A schematic of a bearingless double-sided linear FSPM machine system
is shown in Fig. 2.16. The reference calculation involves calculating the
reference current components [id1,ref, iq1,ref] and [id2,ref, iq2,ref] for the two
opposing linear machine units based on the force references. When the
total thrust force reference ΣFx,ref and the differential attraction force
reference ΔFy,ref are known, the reference forces for each machine unit can
be defined based on (2.35) as

Fx1,ref = Fx2,ref =ΣFx,ref /2 (3.9a)

Fy1,ref = F0 −ΔFy,ref /2 (3.9b)

Fy2,ref = F0 +ΔFy,ref /2 (3.9c)

where F0 is a common-mode attraction-force component, which can be
arbitrarily selected within the boundaries of the maximum motor current.

The current references are then calculated based on the force expressions
of a single linear FSPM machine unit. For example, the current references
can be derived based on the modeling results from Section 2.4 using equa-
tions (2.29a) and (2.34) and the proposed magnetic model of the machine.
In this way, the magnetic self-axis and cross-axis saturation and the effect
of the air gap variation are inherently compensated for in the reference
calculation.

In Publication VI, the described method of reference calculation was
applied in the control system of a bearingless double-sided FSPM linear
machine system. The force expressions (2.29a) and (2.34) were approxi-
mated for easier real-time implementation and used together with the air
gap feedback to calculate the current references.

3.4 Outer Control Loop

After the inner control loop and the reference calculation are properly
designed and implemented, the system, in an ideal case, becomes linear
and decoupled as seen from the interfaces of the outer control loop. Hence,
the levitation and rotation/propulsion controllers can be designed and
tuned independently of each other using any single-input single-output
(SISO) control method for linear time-invariant systems.

3.4.1 Rotation/Propulsion Control

In this dissertation, the rotation/propulsion control system is considered
independently of the levitation control. Hence, the same methods can
be employed for designing the rotation/propulsion control system as are
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used for conventional rotating/linear electric machines, e.g., [79] and [37].
Since this topic is outside of the main scope of this dissertation, simple PI
speed controllers were used to conduct the experiments with the prototype
bearingless machines.

3.4.2 Levitation Control

The performance of the levitation control loop is critical to maintaining
stable levitation of the bearingless system. It is designed to stabilize the
system under all possible operating conditions, which involves compen-
sating for the inherent negative stiffness of the electromechanical system,
providing additional damping, and rejecting disturbances.

In the literature, the levitation control is most commonly realized with
PID-type controllers, where each DOF is stabilized by one SISO controller.
Such a levitation control strategy is employed, for example, in [80], [81],
[82], [27], and [83]. The popularity of PID controllers is mostly due to their
simplicity, while being sufficient for stable levitation in most applications.
The levitation performance obtained with a PID controller can be compara-
ble to that of more complicated methods, e.g., H∞ control, as demonstrated
in [84]. However, the tuning of the PID controllers in practice is usually
hindered by the lack of analytical tuning rules and is often done by a
trial-and-error approach. Hence, this approach can make it difficult to
design a motion controller with the desired predefined dynamics.

A model-based control design of a rotating bearingless motor is presented
in a simulation study [85]. In [72] and [86], a MIMO model-based control ap-
proach is proposed, including a state-feedback method and linear-quadratic
regulator (LQR). While presenting interesting results, these studies do not
include analytical rules for the controller and estimator tuning and do not
discuss pole placement in detail.

A direct discrete-time design of a state-feedback control system is pre-
sented in Publication VI. Analytical design rules for the levitation con-
troller are presented, including the calculation of the feedback gains and
the state observer gains. Pole placement considerations are also discussed.
An example controller design is carried out for a double-sided bearingless
linear motor and verified using experiments. The experimental results in
Publication V are obtained by employing the same control method.

The proposed state feedback controller structure is shown in Fig. 3.4.
The controller consists of an integrator with a gain kI, a state feedback
with a gain K fb = [k1,k2], and a full-order state observer. The shaded area
shows the limiting of the force reference and an anti-windup scheme using
back-calculation.

Here, the controller is presented as applied to a double-sided bearingless
linear system. In this case, the differential air gap Δy is used as a feedback
signal, and the differential force reference ΔFy,ref is the output of the con-
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Figure 3.4. Proposed state-feedback levitation controller for a double-sided bearingless
linear motor. The shaded area shows a back-calculation anti-windup mecha-
nism. This controller structure is also applicable for one-axis levitation control
of a rotating bearingless machine.

troller. Likewise, the proposed controller can easily be adapted to rotating
bearingless machines by using two instances of the controller, with rotor
coordinates x and y as feedback and radial force references Fx,ref and Fy,ref

as outputs.
The mechanical model presented in Section 2.1 and 2.4.4 is used as a

basis for model-based controller synthesis. A detailed derivation of the
control law is given in Publication VI.

The closed loop system has three states: the differential air gap Δy, the
linear velocity vy, and the integral state ΔyI. Hence, there are three poles
to be placed. The poles are divided into one real pole and a pair of complex
poles. Thus, the characteristic polynomial of the closed loop system is of
the form Bfb(z)= (z+az)(z2 +bzz+ cz), which results in a simple calculation
of the feedback gains:

k1 = m
az −bz + cz +7

4Ts
k2 = m

3az +bz − cz +5
2T2

s
kI = m

az +bz + cz +1
T2

s
(3.10)

where Ts is the sampling interval of the levitation control system.
The system state corresponding to linear velocity usually cannot be

directly measured and, hence, needs to be estimated. A common solution is
using a derivative of the position signal. However, this approach amplifies
the noise of the position measurement signal. To attenuate the noise, a low
pass filter may be used; however, this introduces additional delay in the
feedback loop and deteriorates the levitation control performance.

A full-order state observer is a more elaborate approach to obtain the
velocity information. Based on the desired second-order characteristic
polynomial Bo(z)= z2 +dzz+ ez, the observer gains are calculated as

l1 = (ez +dz +1)/Ts l2 = dz +2 (3.11)

The coefficients az, bz, cz, dz, and ez in (3.10) and (3.11) are selected
according to the pole placement recommendations, which are discussed in
the following section.
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3.5 Pole Placement Considerations

In order to tune the proposed flux-linkage and levitation controllers, a pole
placement method is utilized. Also, more involved alternatives, for example,
LQR or robust control methods [87], can be applied for controller tuning.
The control system is intended to be implemented on a digital computer
and executed with a fixed sampling frequency. Hence, the sampling time
imposes an upper limit on the bandwidth of the control system. Pole
locations should be selected starting from the innermost control loop and
moving to the outermost control loop. In the considered cascaded control
structure, the inner and outer control loops are designed independently of
each other. To ensure sufficient separation of the dynamics of the outer and
inner control loops, the poles of the inner control loop should preferably
have at least ten times higher natural frequency than the poles of the outer
control loop.

The flux-linkage controller bandwidth αc in (3.6) should be selected
according to αc <π/(10Tsc), where Tsc is the sampling interval of the inner
control loop. Bearing in mind this condition, the bandwidth αc can be set
as high as possible, since it defines the upper limit for the bandwidth of
the outer control loop. One of the few situations when it is advisable to
lower the bandwidth of the flux-linkage controller is in the case of a high
noise content in the measured current, which can cause audible noise and
high frequency vibrations when amplified by the controller. Also, lowering
the bandwidth can improve the robustness against the parameter errors.

For the levitation control system, the pole locations are easier to choose
in the continuous-time domain, with subsequent mapping to discrete
time. The controller and the observer characteristic polynomials in the
continuous-time domain can be expressed together as

B(s)= (s+ap)(s2 +bcs+ cc)(s2 +dcs+ ec)

= (s+ap)(s2 +2ζsωss+ω2
s )(s2 +2ζoωos+ω2

o) (3.12)

where ap, bc, cc, dc, and ec are the coefficients to be decided. The standard
form representation is used for the second order polynomials with the
coefficients ωs, ζs, ωo, and ζo.

The complex-conjugate poles of s2+2ζsωss+ω2
s are treated as faster poles

related to the linear velocity control. When 0.6< ζs < 0.9 is selected accord-
ing to the desired damping ratio, ωs represents the approximate bandwidth
of the speed-control loop and can be selected according to ωs <αc/10.

The real-valued pole s =−ap represents the air-gap regulation dynamics,
ap being the approximate bandwidth. This pole can be selected slower
than ωs according to ap <ωs/10. Such a pole placement ensures levitation
stability with a faster and well-damped pole-pair corresponding to ωs.
The slower pole ap is moved only slightly in order to avoid unnecessarily
increasing the control effort.
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The remaining polynomial s2+2ζoωos+ω2
o is related to the observer poles.

The selection of ωo in the range 2ωs <ωo < αc/2 is a compromise between
the measurement-noise amplification and the effect of the observer on the
dynamic response of the overall control system. If the noise content in the
position measurement is low, a high value can be selected for ωo which
will ensure minimal influence of the observer on the overall control system
performance.

Additional considerations for the tuning of the levitation controller may
arise from the specific application requirements or unmodeled effects.
For example, in Publication VI, the bandwidth of the faster pole-pair
corresponding to ωs was lowered in order to avoid exciting the bending
mode of the rail in the low-frequency range.

Finally, after the pole locations in the continuous-time domain have
been selected, the coefficients are mapped to their exact discrete-time
equivalents as

az =−e−apTs

bz =−2e−bcTs/2cos
(

Ts

√
cc −b2

c /4
)

cz = e−bcTs

dz =−2e−dcTs/2cos
(

Ts

√
ec −d2

c /4
)

ez = e−dcTs (3.13)
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4. Experimental Bearingless Setups

This chapter describes the prototype bearingless machines that were used
in the scope of this dissertation for the experimental validation of the
results. The chapter provides an overview of the experimental setups and
describes the utilized hardware, system parameters, and implementation-
related issues. The three studied prototypes are:

• Bearingless 4.7-kW SyRM with separated windings;

• Bearingless slice SyRM with combined windings;

• Bearingless linear motor system based on linear FSPM machines.

4.1 4.7-kW SyRM with Separated Windings

The overview of this experimental setup is shown in Fig. 4.1. The studied
machine type is a synchronous reluctance motor with a four-pole multi-
flux-barrier rotor. The details of the machine design are reported in [88].
Two three-phase windings are sinusoidally distributed in the stator slots:
a four-pole main winding for the torque production and a two-pole sus-
pension winding for the radial force production. Out of the available slot
space, approximately 80% is occupied by the main winding and 20% by
the suspension winding. Both windings are star-connected and supplied
independently by two three-phase PWM-operated inverters. The DC-link
voltage for the main winding inverter is 400 V, while the suspension
winding inverter has a DC-link voltage of 60 V. The suspension winding
typically operates at low voltage, because it does not need to overcome the
rotation-induced back-EMF and usually carries relatively low currents.
Using the 400 V DC-link for the suspension winding would result in very
narrow voltage pulses. Lowering the DC-link voltage increases the useful
pulse-width modulation resolution in the low voltage range.

The mechanical arrangement is presented in Fig. 4.1(a). Both ends of the
prototype machine are supported with AMBs. This helps with the initial
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(a)
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Figure 4.1. Overview of the bearingless 4.7-kW SyRM setup: (a) mechanical drawing
showing the main components of the assembly and (b) photograph of the test
setup and a drawing of the machine geometry.

testing of the control system and makes it possible to indirectly measure
the radial forces produced by the bearingless motor without operating the
machine in the levitation-control mode. Mechanical touchdown bearings
support the rotor at rest and provide safe touchdown in case of levitation
control failure during operation.

The control algorithm was developed in the Matlab/Simulink environ-
ment and implemented on a dSPACE MicroLabBox rapid prototyping
platform for real-time execution. The gate signals generated by the con-
trol system are passed to the inverters through the appropriate interface
boards. The main winding was supplied by an ABB ACS880 inverter. The
suspension winding was supplied by an ABB ACSM1 inverter, which was
modified to work with a 60 V DC-link voltage. The feedback signals for
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the control system include phase current measurements from the main
and suspension windings; DC-link voltage measurements of the main and
suspension inverters; the rotation angle of the rotor; and the radial position
of the rotor in the xy coordinates. The measured quantities are sampled
synchronously with the PWM.

The rotation angle is measured using an incremental encoder attached to
the non-drive end of the shaft. The radial position of the rotor is measured
at the shaft using eight proximity probes in total—two groups of four probes
placed at both sides of the bearingless machine. The sensors are eddy
current type 3300 XL 8mm proximity transducers from Bently Nevada.
Radial displacement along one axis is obtained with a differential reading
from two opposing sensors. The differential measurement compensates for
rotor manufacturing imperfections and for possible thermal expansion of
the rotor.

This machine design was used in Publication II as a basis for FEM
analysis and for deriving the system model, and in Publication III for the
time-domain simulation study. Experimental levitation results from this
machine have not been published before and are presented for the first
time in this dissertation.

4.2 Slice SyRM with Combined Windings

The test setup for a prototype bearingless slice SyRM is shown in Fig. 4.2
together with the machine geometry. Due to the slice motor structure, the
disk-shaped rotor is passively stabilized in the axial movement and tilting
degrees of freedom. The machine has a four-pole reluctance rotor with
flux barriers and a stator with six slots and a double-layer concentrated
winding. The machine geometry is based on the design presented in [89]
and [90]. The main motor dimensions and system parameters are listed in
Table 4.1. Bearingless operation is achieved by using the combined winding
structure. Six phases of the machine are arranged into two independent
star connections and supplied with a PWM-operated inverter with six
half-bridges. The method to superimpose the torque-producing and force-
producing currents into the combined winding is described in Publication V.

The measured signals from the motor include six phase currents, DC-link
voltage, the rotor radial position, and the rotor angle. These signals are
fed back into the control system for real-time levitation and rotation con-
trol. Real-time control is implemented on a digital signal processor (DSP)
TMS320F28335 by Texas Instruments. The DSP and the power inverter
are integrated into a control unit LCM-ECU-10HB-10A provided by Linz
Center of Mechatronics. The control unit also includes the necessary hard-
ware for voltage and current measurement; analog-to-digital converters
for sampling the rotor position and angle sensors; and a communication
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Figure 4.2. Photograph of the test setup for the prototype bearingless slice SyRM with
combined windings. Drawing of the bearingless machine design is also shown.

interface for programming and monitoring purposes. The control system
was developed using the Matlab/Simulink environment. X2C software for
Matlab was utilized for code generation and for programming the DSP.

Table 4.1. Parameters of the bearingless slice SyRM.

Parameter Value Unit

Airgap 1 mm

Rotor outer diameter 80 mm

Stator outer diameter 160 mm

Rotor and stator stack lengths 10 mm

Rotor weight 0.25 kg

DC-link voltage 60 V

Continuous RMS current 6 A

Number of wire turns per coil 200

The radial position of the rotor is measured with four eddy current type
displacement sensors. Four printed circuit board coils are mounted on a
stationary post in the center of the rotor and measure rotor displacement
against a polished aluminum insert fixed to the rotor. An analog circuit is
utilized to obtain the displacement information using the method presented
in [91].

Implementing a reliable and contactless rotor angle measurement is
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Figure 4.3. Overview of the linear bearingless system setup: (a) a mechanical drawing
showing the arrangement of four FSPM motor units on two sides of the vertical
rail with red and blue arrows denoting the normal and thrust forces of the
motor units respectively and (b) a photograph of the test setup.

challenging, since the reluctance rotor does not produce its own magnetic
field. An axially magnetized multi-pole PM ring was attached concentri-
cally to the bottom side of the rotor. Four analog Hall effect sensors are
placed under the rotor in order to measure the variation of the flux from
the PM ring. Finally, the atan2 function is used to obtain the rotor angle.
The filtered derivative of the angle provides the speed information. This
solution was implemented with an 18-pole PM ring RMSI30.9-18A-F from
BOGEN Electronic and SS495A Hall sensors from Honeywell.

The experimental results from this setup are presented in Publication V
along with the description of the control algorithm and system parameters.

4.3 Linear FSPM Motor System

In this experimental setup, four linear motor units are mechanically con-
nected to form a linear bearingless system, as shown in Fig. 4.3(a). The
mover consists of four three-phase linear FSPM motors arranged in a
double-sided configuration around a fixed vertical rail. Each motor unit is
supplied with a separate three-phase power inverter. The machine design
is shown in Fig. 4.3(a). One motor unit consists of 12 mover slots and
14 rail poles. Additional teeth are included at both ends of the mover to
reduce the end effects. The mover travels along the rail in the x-direction
by using the thrust force produced by each motor unit. At the same time,
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Table 4.2. Parameters of the bearingless linear FSPM motor system.

Parameter Value Unit

Nominal air gap 1.05 mm

Total mover mass 100 kg

Nominal thrust force of each unit 600 N

Continuous RMS current 10 A

Nominal travel speed 1 m/s

the attraction force of each motor unit towards the rail can be controlled to
achieve contactless operation. In the experimental setup, three degrees of
freedom are actively controlled: levitation along the y-axis, tilting around
the z-axis, and movement along the x-axis. Rotation around the x-axis,
tilting around the y-axis, and movement along the z-axis are mechanically
prevented with linear bearings. A counterweight is used to compensate for
the gravitational force acting on the mover. Fig. 4.3(b) shows a photograph
of the test setup. The main system parameters are listed in Table 4.2.

The levitation and propulsion control systems receive real-time feedback
in the form of the DC-link voltages and phase currents of each motor
unit, linear x-axis position along the rail, and air gap length of each motor
unit. The linear position of the mover and the air gaps are measured with
eddy current sensors. The linear position is determined by measuring the
magnetic saliency of the rail teeth. The air gap information is obtained
by measuring against a flat aluminum strip placed along the rail. The
control system is designed using Matlab/Simulink and implemented on
a programmable logic controller from Beckhoff. The code for the control
algorithm is generated and programmed using TwinCAT software. The
power inverters are also supplied by Beckhoff.

The differential normal force measurements are carried out by mechani-
cally fixing the mover into the desired constant y position using load cells,
which also provide the force measurement while the currents can be varied
arbitrarily.

This experimental setup was used for testing the control system and the
feedback linearization method in Publication VI. Normal force and back-
EMF measurements from this experimental setup were used for validating
the modeling approach in Publication VII.
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The control system described in Chapter 3 was implemented in discrete
time for real-time execution and applied to three bearingless machine sys-
tems described in Chapter 4. This section presents selected experimental
results from the levitation tests and discusses the most important control
system aspects for each prototype machine.

5.1 4.7-kW SyRM with Separated Windings

The experimental results obtained from the bearingless 4.7-kW SyRM
prototype are shown in Fig. 5.1. The rotor lift-up test is shown in Fig.
5.1(a), including rotor displacements and currents. Because the machine
is horizontally mounted, prior to the lift-up, the force of gravity keeps the
rotor resting on the safety bearings at a negative y-axis displacement.

The x-axis position is regulated to 0 and the y-axis position is regulated
to +0.1 mm in order to have the gravity force partially canceled out by the
UMP and to reduce the steady-state suspension-winding current.

After the levitation is established, the machine is accelerated up to the
nominal rotation speed of 157.08 rad/s as shown in Fig. 5.1(b). The nominal
speed is reached in less than 2 s while maintaining stable levitation with
very little radial rotor movement. During the spin-up, the magnetizing
current itd is gradually increased from 5 A to 10 A which improves the
levitation stability at high rotation speeds.

Due to the distributed windings structure, the force production of this
prototype machine is accurate and predictable. Hence, the levitation control
is relatively simple to implement and tune. Successful experimental tests
are also facilitated by the accurate and low-noise position and current
sensing hardware.
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(a) (b)

Figure 5.1. Experimental results of a prototype 4.7-kW bearingless SyRM with separated
windings: (a) the lift-up test showing the rotor transition to the centric position
and current components during the transient and (b) the acceleration to the
nominal rotation speed of 157.08 rad/s during active levitation control.

(a) (b)

Figure 5.2. Experimental results of a prototype bearingless slice SyRM with combined
windings: (a) the lift-up test showing the rotor transition to centric position and
current components during the transient and (b) the rotation test during active
levitation control. A speed reference step of 30 rad/s is applied at t = 0.05 s.

5.2 Slice SyRM with Combined Windings

Experimental results obtained from the bearingless slice SyRM prototype
are shown in Fig. 5.2. The rotor lift-up transient is shown in Fig. 5.2(a).
This prototype machine has the axis of rotation positioned vertically; hence,
the xy movement is not influenced by the force of gravity. While the rotor
is levitated in the centric position, the motor is accelerated up to 30 rad/s,
as demonstrated in Fig. 5.2(b), which shows the rotor speed ωM, the rotor
angle ϑM, and instantaneous phase currents. The ripple in the measured
speed signal is due to an imprecise spatial distribution of Hall-effect sen-
sors that are used for measuring the rotor angle and speed. Nevertheless,
stable levitation is maintained at this rotation speed. Higher rotation
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(a) (b)

Figure 5.3. Experimental results of a prototype bearingless linear motor system based
on FSPM machines: (a) the lift-up test with reference shaping for smoother
transition to levitation and (b) the propulsion test while maintaining active
levitation.

speeds were not achieved with this prototype, due to a tilting instability
that occurs when the rotation speed reaches approximately 60 rad/s.

The use of concentrated winding in the design of this prototype SyRM
results in a relatively high inaccuracy in the radial force production, which
complicates the control system design and tuning.

5.3 Linear FSPM Motor System

Experimental results obtained from the bearingless linear FSPM motor
system are shown in Fig. 5.3. Fig. 5.3(a) shows the levitation start. The up-
per subplot shows the differential air gaps of the upper and lower machine
unit pairs, as denoted by Δy12 and Δy34, respectively. The magnetizing
currents id of each machine unit (which are used to control the attraction
force) are shown in the bottom subplot and denoted with id1, id2, id3, and
id4. The thrust-force producing currents iq are controlled to be equal for
each machine unit; hence, only iq1 is shown. Before the lift-up, the mover
is held attached to the rail by the attraction forces due to the PMs. The
levitation control is enabled at t = 0.3 s. However, the currents immediately
requested by the levitation controller do not produce sufficient force to
overcome the attraction force due to the PMs. Because of the integral
action of the levitation controller, the currents continue to slowly rise until
approximately t = 1 s. At this point, the mover detaches from the rail and
both differential air gaps are regulated to 0.
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Fig. 5.3(b) shows the results of a thrust-direction movement test. The
mover levitation is kept stable, while it travels 1.3 m along the rail reaching
the nominal speed of vx = 1 m/s.

This prototype bearingless system has been shown to be the most de-
manding out of the studied machines in terms of the control system design.
This is mostly due to high inherent negative stiffness. A complicated and
saturating magnetic circuit results in non-linear force production with
respect to both the air gap and the currents, which further complicates the
control system design. Proper dynamic modeling and feedback lineariza-
tion has proven to be an important tool in stabilizing the levitation control
of this prototype.

Most recently, the existing experimental setup was extended to a four-
sided system with eight machine units and has been used in [92] to demon-
strate stable levitation in all six degrees of freedom.
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6. Summary of Publications

6.1 Abstracts

The abstracts of the publications are reprinted in this section. Publication I
deals with flywheel energy storage. Publications II, III, and IV deal with
bearingless SyRMs with separated windings. Publication V deals with
bearingless SyRMs with combined windings. Publications VI and VII deal
with bearingless FSPM linear machines.

Publication I

This paper presents a novel analytical method for electro-mechanical de-
sign of a high speed long-term flywheel energy storage system and thermal
evaluation of possible operating modes of the system. Flywheel’s composite
shell rotor along with the motor/generator unit are assumed to be placed
into a sealed vacuum chamber, which presents a challenge of heat transfer,
produced by rotor losses. Developed method takes into account thermal
radiation properties of the rotor and is realized using Mathcad software,
which allows for quick investigation of any flywheel configuration. The
method involves calculations for preliminary rotor sizing and determining
achievable operation modes, while keeping the rotor under a specified
temperature limit. Results of using this method for studying dependencies
of thermal performance on initial system parameters are presented and
conclusions are drawn. Based on the conducted study, recommendations
on system design considerations are given.

Publication II

This paper deals with magnetic modeling of a bearingless synchronous
reluctance motor. The motor under consideration includes two separate
sets of three-phase windings, one for torque production and the other one
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for radial-force production. This paper demonstrates by means of finite-
element analysis, that it is unrealistic to assume the two three-phase
windings to be decoupled from one another. Instead, it is shown that
especially the torque-producing winding currents affect to the operation
of the radial-force producing winding. A simple nine-parameter explicit-
function based magnetic model is proposed to model the cross-saturation
between the two winding sets. The effectiveness of the proposed magnetic
model is demonstrated by applying it together with model-based torque
and radial-force controllers.

Publication III

This paper deals with a model-based state-space flux-linkage control of a
dual three-phase-winding bearingless synchronous reluctance motor. Ana-
lytical tuning rules for the state feedback, integral action, and reference
feedforward gains are derived in the continuous-time domain. The pro-
posed method is easy to apply: the desired closed-loop bandwidth together
with the estimated magnetic-model of the motor are required. Further-
more, the proposed method automatically takes into account the mutual
coupling between the two windings. A simple digital implementation is
provided and the robustness of the proposed control method against the
system parameter inaccuracies and eccentric rotor positions is analyzed.
The proposed controller design is evaluated by means of simulations by
keeping in mind the most important aspects related to an experimental
evaluation.

Publication IV

This paper deals with modelling of rotor eccentricity in a dual three-phase
winding bearingless synchronous reluctance motors (BSyRMs). The motor
includes two separate sets of three-phase windings: one for torque pro-
duction and the other one for radial force production. For this motor, an
improved analytical model with linear magnetic material is presented.
The accuracy of the model depends on the accuracy of the inverse air-
gap function. Typically, a series expansion is used for approximating the
inverse-airgap function. In order to make the main-winding inductances
depend on the radial position, at least the first two terms have to be in-
cluded in the expansion, enabling calculation of the radial forces caused
by unbalanced magnetic pull. The improved model is applicable, e.g., for
stability analysis, time-domain simulations, or developing real-time control
methods.
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Publication V

This paper deals with modeling of bearingless synchronous reluctance
motors with a combined winding. A method to link an existing model used
for the separated windings structure to the combined winding structure
is proposed. A dynamic model applicable for the purposes of time-domain
simulation, model-based control design, and real-time control is presented.
The finite-element method (FEM) is used to validate the proposed model
and to show the feasibility of the considered slice motor type, including
passive stability of axial movement and tilting, force and torque produc-
tion, and ripple. Applicability of the developed model in control design is
demonstrated. The model is validated by means of experiments.

Publication VI

This paper deals with levitation control for a double-sided bearingless
linear-motor system. Analytical design rules for a state-feedback gain
and a state observer are derived. To decouple the production of forces in
thrust- and normal-force directions, feedback-linearizing control based on
the magnetic model is proposed. The proposed control design is tested in
an experimental system consisting of four individually supplied linear-
motor units in a double-sided configuration. The results from time-domain
simulations and experimental tests suggest that the proposed control
design can successfully provide smooth transition to contactless operation
and retain the stable levitation during the movement in the thrust-force
direction.

Publication VII

This paper deals with dynamic models for three-phase bearingless flux-
switching permanent-magnet (FSPM) linear machines. This machine type
can be used to build a magnetically levitating long-range linear drive
system, whose rail does not need any active materials apart from iron. A
dynamic machine model is developed by means of equivalent magnetic
models, taking into account air-gap variation and magnetic saturation.
The effects of these phenomena are analyzed using finite-element method
(FEM) simulations of a test machine. The parameters of the proposed
model can be identified using the FEM or measured data. The model can
be applied to real-time control and time-domain simulations. The model is
validated by means of experiments.
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6.2 Scientific Contributions

The main scientific contributions of the dissertation are summarized as
follows:

• A simple explicit-function based magnetic model (2.12) is proposed for
bearingless SyRMs in Publication II, taking into account the effects
of the self-saturation and the cross-saturation between the main and
the suspension windings. Based on the FEM analysis it is shown
that the cross-coupling due to saturation can be present even with a
centric rotor.

• A model-based design method for a state-space flux-linkage controller
is developed for bearingless SyRMs in Publication III. The proposed
controller is easy to apply and automatically takes into account the
cross-coupling between the main and the suspension windings. Ana-
lytical tuning rules for the controller gains are derived.

• An analytical model including rotor eccentricity is proposed for bear-
ingless SyRMs in Publication IV. The proposed model improves upon
the existing textbook model [5] by including more terms in the in-
verse air-gap length approximation, which gives it better accuracy in
predicting radial forces under eccentric rotor conditions.

• A method to link the textbook model of the bearingless SyRM with
separated windings to the machines with a combined multiphase
winding is proposed in Publication V. The developed method allows
to apply the existing dynamic models of separated windings SyRMs
to the machines with combined windings.

• A state-space levitation controller is designed for a double-sided
bearingless linear-motor system in Publication VI. Analytical design
rules for the levitation controller are derived. The control system
includes a feedback linearization method, which is based on the
magnetic model of the machine and can take into account the effects
of saturation and air gap variation.

• A dynamic model for bearingless FSPM linear machines is developed
in Publication VII. The proposed model is derived from the equiva-
lent magnetic circuit and takes into account air gap variation and
magnetic saturation, which allows it to predict the force production
of the machine at various operating conditions with good accuracy.
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Bearingless machines, specifically SyRMs and FSPM linear machines,
were studied in the scope of this dissertation. Due to the complex nature
of these devices, conventional control methods are often insufficient to
provide the desired level of levitation stability and driving performance.
To improve the performance of bearingless machines, more sophisticated
control methods, such as model-based control, have to be employed. Model-
based methods can also provide a more thorough understanding of the
system behavior, dynamics, and characteristics. However, the effectiveness
of the control system heavily depends on the accuracy of the machine
model, especially if high dynamic performance is required. This fact mo-
tivates the development of the dynamic models for bearingless machines.
The mathematical machine model should be sufficiently accurate to repre-
sent the behavior of the actual machine to be applicable for control design
purposes. Other important requirements are the generality and the phys-
ical consistency of the model, which ensure its applicability to different
machine designs. Accurate analytical models are also useful for estimation
purposes, time-domain simulations, and stability and robustness analyses.

In an effort to improve upon the existing modeling approaches, this dis-
sertation focuses mainly on the modeling of two important phenomena:
magnetic saturation and air gap variation. These are discussed in relation
to bearingless SyRMs in Publication II and Publication IV respectively.
A related future research topic could be to combine these modeling ap-
proaches in order to include both phenomena at once. By using the linking
method proposed in Publication V, the models developed for bearingless
SyRMs with separated windings can be also applied to machines with com-
bined multiphase windings. A dynamic model for bearingless linear FSPM
machines is developed in Publication VII, which accounts for both the satu-
ration and the air gap variation. The accuracy of the proposed models was
verified with FEM, including their ability to predict the magnetic behavior
and the force production across different operating points. Proposed models
can be parameterized via fitting to FEM-based or measured data. Future
research could focus on developing identification methods to parameterize
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the proposed models.
The proposed improvements to the modeling of bearingless machines

are used as a basis for the contributions in control design. Among these
contributions, it was discovered that classical pole placement control theory
is well suited for levitation control of bearingless machines. For the inner
control loop, Publication III proposes an elegant solution for changing the
state variable from current to flux linkage. This allows a simple linear
controller to effectively control the currents in the machine irrespective
of the saturation, while also inherently decoupling the torque and force
production. A levitation controller and a full-order state observer design is
proposed in Publication VI. Using state-feedback control with direct pole
placement results in an adequate levitation performance, as demonstrated
by applying the developed controller to three experimental bearingless
systems. Analytical tuning rules are given for each developed controller.

The reference calculation is an important part in a cascaded control
system, whose role is to map the force references requested by the levita-
tion controller to the current references for the inner control loop. Using
constant coefficients for this mapping is often insufficient in the presence
of nonlinear effects. Publication II and Publication VI demonstrate an im-
proved control system performance when applying feedback linearization
for a more accurate reference calculation.

Experimental results, including the force measurements of the linear
FSPM machine prototype and levitation tests of the three bearingless pro-
totypes, demonstrate the practical applicability of the proposed methods.
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Errata

Publication V

In Fig. 9(b) the cyan current component trace should have a legend iC2

instead of iC3.

In Section IV B, the tilting stabilizing torque Tstab is given with a measure-
ment unit of Nm/A, while the correct measurement unit is Nm·A. Similarly,
the axial passive stabilizing force Fstab is given with a measurement unit
of N/A, but the correct measurement unit is N·A.
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