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Abstract

This paper illustrates a systematic approach to feedback linearization for a magnetic
bearing system. This method relies upon the construction of a nonlinear coordinate
transformation that insures a unique feedback linearization law exists which has sev-
eral practical properties: the linearizing feedback is guaranteed regular; the resulting
linearized system is guaranteed controllable; and beam angular position regulation is
achievable. Moreover, the construction of a diffeomorphism allows the control engineer
to assert operating constraints on the actuator fluxes. In particular, this paper investi-
gates constant flux sum and constant product constraints and compares their relative
merits.

1 Introduction

Magnetic bearings are nonlinear devices, but normally they are modeled using Jacobian lin-
earization about a fixed operating point (of both position and magnetization) [6]. However,
there are many instances when the bearing system must operate away from the linearization
neighborhood. For example, magnetic bearings typically have large clearances and in some
cases the rotor must operate reliably over the entire clearance space. A particular appli-
cation where this is true is the magnetic bearing suspended impeller for an artifical heart
pump, which does not have back-up bearings and must sometimes operate near the bearing
clearance limit [9]. Similarly, actuator fluxes might also deviate far from nominal conditions,
compromising both performance and stability. Feedback linearization avoids these problems
by providing an exact linearization over the entire operating clearance of the actuator.

On the other hand, many applications require a minimum control effort, while still achiev-
ing a specified performance [3]. One objective is to keep the bias flux as low as possible to
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limit coil current induced ohmic losses. However, the flux ¢ governs the force slew rate Fof
the actuator, placing restrictions on bearing performance. Mathematically,

. d
Foc;ﬁd)zocqﬁ% (1)

where N and v are the coil turns and voltage respectively. Therefore, with decreased bias
fluxes, the actuator’s dynamic capacity gradually diminishes until it is zero at the origin.
Feedback linearization provides a method of constraining actuator fluxes independently of
rotor position, which allows the control designer to implement low power biasing strategies.

Several works have considered solutions to the above mentioned difficulties. Levine et.
al. [10] employed a polynomial to define the flux constraints on a magnetic bearing in order
to keep the bias flux low but still avoid zero bias flux and the resulting loss of stability. Kim
and Kim [14] explored the use of gain scheduled controllers over a range of actuator motion.
Trumper et. al. [5] applied feedback linearization to the magnetic suspension of a ball with
resulting improvement in tracking and stability away from the nominal operating point. A
globally linearized current control law in controllability canonical form was developed which
was linear with ball position and proportional to the square root of the acceleration to be
applied to the mass. Mittal and Menq [15] investigated the use of a geometric feedback
linearization technique about the origin for a suspended ball similar to that of [5]. They
noted that their method is subject to uncertainty errors due to parameter variations and
external disturbances but that these effects can be overcome with good nonlinear control
design methods with resulting robust control. The conventional linearized model destabilizes
under certain conditions that the feedback linearized controller can still control, such as
large ball motions. Lindlau [4] investigated a feedback linearization approach to dynamic
biasing. Recently, Li [12] as well as Li and Mao [13] discussed exact linearization using
several different control configurations: constant voltage sum (CVS), constant current sum
(CCS) and constant flux sum (CFS). They showed better tracking properties of the magnetic
bearing with these control algorithms.

While several authors have discussed exact linearization, no systematic method of de-
veloping the approach has been presented in the literature for MIMO magnetic bearings
to date. This paper discusses a very general special coordinate transformation developed
by Nijmeijer [8] and Isidori [1] that can be used to evaluate various control strategies for
magnetic bearings and applies this method to some particular magnetic bearing systems.
Slotine and Li [11] discuss a similar approach. It is well known that an infinite number of
transformations can be found to linearize a nonlinear system. However, a very specific one
must be constructed, called a diffeomorphism, that twists the original system into a new
one with specific properties: unique feedback linearization that is regular and guarantees
controllability. This mathematical technique provides an unambiguous way of obtaining the
coordinate transformation and a natural way of placing constraints on the actuator fluxes.

2 System Description

Figure 1 illustrates the system to be comsidered in this paper. Essentially, a rigid beam
of moment J is simply supported at its center of mass by a pivot designated by O. At
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Figure 1: Symmetric balance beam with magnetic bearings.

a length L, to either side of the pivot are horse-shoe electromagnets labeled Al and A2,
which produce forces F} and F;. Each actuator has a voltage input v, and v, and flux state
variables ¢; and ¢;. The remaining two states of the system are the beam angle, 6, and
angular velocity, §. The system can be adequately described by the following differential
equation

JO = 7rn(6,8) + d(2) (2)

where T,,(¢, ) is the magnetic actuator torque and d(¢) is an unknown external moment.

We now calculate the function 7,,(¢,8) assuming the coil voltage as input. Begin by
noting the that the flux linkage, A, and flux , ¢, are related by the number of wire turns, N,
in the actuator coil

A= N¢
Then from Faraday’s Law we have that
dA . do :
D—E'FRZ—NE-FRZ (3)

where R and ¢ are the coil resistance and current respectively. However, Ampere’s Law gives
the current, 7, in terms of flux ¢, as

i = J-lv-sz(ew

where the actuator reluctance, R(6), for actuators Al and A2 is

_ 2(90 * Lae)
Ry(6) = ==

Here go and A are the nominal air gap length and air gap area, respectively. When combined
with Eq. (3) this gives
dé 2R des 2R

- N Y d vy = N222 2
v = NG T a9t Laf)en and ve = NTE 4 oo

(90 — Laf) 92 (4)
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which expresses the relationship from voltage to actuator flux. A corresponding force be-
tween the stator and rotor components develops in response to the flux between them. This
relationship between force and flux can be approximated by evaluating the magnetic energy
present within the actuator given variations in beam displacement. Neglecting magnetic
fringing and leakage the magnetic energy stored in the actuator is [2]

E(9) = 5R(6)¢°

Differentiation of the reluctance with respect to beam angle provides the force expression

oF 10R

F=—er=—2—"4¢°
8~ "290°
Then, given a torque arm of length L,, the actuator torque for A1 and A2 becomes
L

— . - a 2 .
T]z = F% LA :FﬂoAqsé La (5)

Finally, in state space form the nonlinear dynamic equations describing the magnetic bearing
system become

o —ca(go + Lab)én ~ 0
d | ¢ _ —c2(go — Lab) 92 0 %
7 (9 = g + 0 v + ]g (%) (6)
6 c1(¢3 — ¢2) 0 0
d
d_: = f(z)+ q1v1 + G202 (7)

For convenience we have defined ¢; = J—{:.% and ¢, = W"I’V—%. This system has two inputs
and at most two outputs. One output will be the beam angle A; = 6. The other, A, will
not be chosen until later because its selection will profoundly affect the construction of a
diffeomorphism that makes feedback linearization possible . As stated earlier the diffeomor-
phism twists the nonlinear system described by (7) so that its nonlinear components can
be algebraically canceled. Although one might construct a feedback linearization in an “ad
hoc” approach there is no guarantee that the resulting linear system would be controllable
and implementable. In the next section the controllability of system (7) will be investigated
to prove that the system is feedback linearizable.

3 Nonlinear Controllability

This section will be to show that the system exhibits the properties of strong accessibility
and feedback invariance. Conceptually, we are interested in the overlap of the input space
and the state space defined by f(z). If the overlap is the same dimension as the state space
then some type of controllability exists for the system (7). To explore this concept further,
define Gy as the smallest Lie algebra which contains g; and g, and also satisfies [f, X] € Co
for all X € Cy. Using the above definition we generate a corresponding distribution

Co(z) = span{X(z)| X vector field in Co}
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In the literature, Cp is the accessibility algebra and Cy the accessibility distribution. With
these definitions we posit the following

Theorem 1 The system (7) is said to have the property of strong accessibility from the point
Ze if

dimCo(ze) = n

where n is the system order.

Readers interested in the proof of the above theorem are referred to [8]. Note that for
linear systems this reduces to the Kalman Rank Condition. For the system (7), g1 and g,
are constant, therefore the distribution spanned by the vector fields g; and g, is trivially
involutive '. so that the accessibility distribution for the system does not contain brackets
of g1 and g,. Hence, the accessibility distribution for system (7) becomes

Co(me) = span {91,92’ [f7 91]7 [fng]’ [fa [fa gl]]’ [f’ [fag’l”v [fa [f’ [f’gl]”a [fa [fv [fagZ]]]a } (8)

where the maximum possible dimension of C, is the dimension of the state space described
by (7), in this case four. Examination of C shows that we need only take

CO(xE) = Span {91)927 [fa gl]’ [f7 g2]) [f, {f? gl]]’ [f’ [f,g?]]} (9)

to achieve a dimension of four because additional vector combinations are redundant. Given
this information, we select Eq. (9) as the definition of the accessibility distribution for this
particular system. Interestingly, strong accessibility vanishes when the equilibrium point of
the system is chosen to be z. = (0,0,0,0), which agrees with intuition based on Eq. (1).
However, for an equilibrium point in the open set R*— 0, say z, = (6,€,0,0), dim Co(z.) = 4
so that the system exhibits strong accessibility by Theorem 1. This suggests that the system
described by (7) must have at least a very small bias flux to be controllable.

Now we may use the following theorem of Nijmeijer [8] to determine feedback lineariz-
ability.

Theorem 2 Given the system & = f(z)+ g1u; + gou, is strongly accessible in . and flze) =
0 the system is feedback linearizable ? if and only if the distributions

Di(z) = span{adjgi,...,ad}ge|r =0,... .k —1},k=1,2,3,4

1A distribution G is involutive if the lie bracket [81, B2] of any pair of vectors fields 8; and 3, belonging
to G is a vector field belonging to G. Mathematically,

BLEG, B e G=[B,8)€CG

Briefly, & = f(z) + g(z)v is feedback linearizable if the following statements are true:
(i) a diffeomorphism, z = ®(z) is defined around z.
(ii) regular feedback is defined

such that the nonlinear system £ = f(z) + g(z)v can be written in the form 7 = Az + Bu
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are involutive and of constant dimension in the neighborhood z. ®. Furthermore, the resulting
linear system is controllable.

In the case of system (7), the distributions are in fact all involutive, thus satisfying the first
condition of Theorem 2. The next condition is that the dimensions of these distributions
are constant (i.e. feedback invariant). This test is performed by evaluating the dimension
of the distributions at z and at x + &, where J is a state perturbation. Performing this
test shows the distributions Dy, Dy, D3, D4 have invariant dimensions 2, 3,4, 4 respectively,
and so satisfy the second condition of Theorem 2. As with controllability, the system fails
the feedback invariance criterion at an equilibrium point z. = (0,0,0,0) such that the
distributions Dy, D,, D3, D4 have invariant dimensions 2, 3,3,3. This further emphasizes the
ill-defined nature of the system at the origin (without bias).

4 Construction of Diffeomorphism

In the previous section system (7) was shown to be feedback linearizable. Consequently, a
coordinate transformation z = ®(z) exists such that its application will twist the original
system into Byrnes-Isidori normal form. Here ®(z) represents a function in R™ and is called
a global diffeomorphism when the following conditions are satisfied:

(i) ®@~(z) exists such that ®7!(®(z)) = z (invertible)
(ii) ®(z) and ®~!(z) both have continuous partial derivatives of any order (smooth map-
pings).

Application of the diffeomorphism to the description of the nonlinear system can be calcu-
lated as

y = h(z)
where
fe)= 2 f(a) i) = 2gl@) h(=) = Ay (10)

z=¢~1(z)

We wish to construct a diffeornorphism that twists the nonlinear system into a specific form
(i.e. normal form). Let us begin by considering the normal form of the system described by
Eq. (7) given relative degree r = 3,1

21 = 29

2o = 23

z3 = Bulz)vr + Biz(z)v2 + aa(z)

zy = Bulz)vy + Baz(2)v2 + a(2) (11)

3A convenient shorthand notation for the k-th recursive bracketing of f with g Is ad’f‘g(x) =

(£ 1fs - (i) 1)
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Let us elaborate on each equation of system (11) beginning with the uppermost
dq)l . 6@1 0:10 N 8@1
dt ~ 0z 8t Oz
and then set the first channel of the coordinate transformation to be the first output, math-

ematically

21 =

(f(@)+ a1 (z) + 92(2)) = 22

(I)l =21 = hl (12)
where h; is the first output. Then the previous equation for z; becomes
2:’1 = thl + Lg1h1 + nghl

Here L;(-) is the Lie derivative . Now, inspection of the system (11) shows that the input
should not appear in the first equation. Therefore, the following must be true

Lg1h1 =0 and nghl =0
so that
Z'l = thl = 22 (13)

Continuing onto the second equation of system (11) and using the fact that z, = ®; = Lsh,
we have

d(pg 8(1)2 6$
29 = = —_

2= SRS o Lh(f() + ai(e) + 0a(2)

= L'thl + L_nglhl -+ Lngzhl = Z3

Once again, inspection of the system (11) shows that the input should not appear yet. As
such

Lnglhl =0 and Lngzhl =0
then
2."2 = L%hl =23 (14)

in similar fashion 23 is calculated

dd 03 0z
TR =28 = Dh(f) + () + g(@)

= L:;hl + L§L91h1 + L‘%nghl

Z3 =

4This differential operation L;A(z) is called the Lie derivative of A along f where A is a real-valued
function and f a vector field and is calculated as

(D), f@) = P flz) = Y o file)
i=1 ¢

where product of the Lie derivative is a new real-valued function.
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Since the output must appear in this equation to satisfy the normal form we have that
LiLghy #0 and L2Lghy #0

Having exhausted the output 4, by this process, we proceed to calculate z4 using the output
ha. The results of Isidori [1] explain that if the number of differentiations before an input
appears is 7 for each output k such that 7, +... 4+ r, = n (where there are m inputs and
the system is n*® order), then a coordinate transformation exists that is both nonsingular
and twists the nonlinear system the into normal form. Thus, since the first output was
differentiated three times before the input was allowed to appear, r; = 3, we desire to differ-
entiate the second output only once before the input may appear, r, = 1. From a geometric
perspective, we desire to maximize the dimension of the system manifold such that the zero
dynamics sub-manifold must be 0-dimension. The zero dynamics manifold represents the
“internal” dynamics of the system which for specific input and initial conditions constrains
the output to be identically zero. For linear systems, the zero dynamics are those eigenvalues
of the system which coincide with the zeros of the transfer function. If possible, we avoid
zero dynamics by proper selection of the output. Hence we select the fourth channel of the
coordinate transformation to be

@4 =24 = h2 (15)
and since this is the last equation of the system, the input must appear so that ry+7, =4 =n

d® 0%, 0z
24 = —df = 'a—;a = thQ + Lg1h2 + nghz

and thus
Lgha#0 and Lghy #0

Several conditions were placed on equations for 2; through z; to ensure that the coordinate
transformation results in normal form with no zero-dynamics. Summarizing

Lg;Lkhi(z) =0 (16)

forall1 <j<m,foralll <7< m,andforall £ <r;—1. In addition, the following matrix
must be nonsingular:

Ly L2hy Ly,L%h, ] (17)

Ly ho Ly, he

The above conditions are in fact the definition of the relative degree {r,,r;} of this system[1].
Although the framework for building a coordinate transformation that twists the nonlin-
ear system described by (7) has been provided by the previous analysis, i.e.

@l = hl
(1)2 = thl
4)3 = L?hl

¢4=h2
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the outputs h; and h, have not been chosen. It is clear that the conditions (16)-(17) place
restrictions on the choice of output such that normal form can be achieved. Consider the
primary control objective for the system, which is that 6(¢) — 0 as t — oo. As such, one
output must be 8. Recall that the first output, 8, must be differentiated three times before
an input appears. To satisfy the condition r; + 7, = n = 4, we must only differentiate
the second output once before the input appears. Inspection of system (7) shows that any
smooth function F(¢;, ¢2) satisfies this condition. In this paper two functions for h, will
be considered: hy = {¢; + ¢2)/2 and hy = ¢1¢;. The first choice offers the possibility of
controlling the nominal flux dynamically, while the second dismisses the concept of biasing
altogether in favor of complimentary flux control. Either choice satisfies the conditions
of relative degree imposed by conditions (16)-(17) at the equilibrium of the system, z. =
(e,€,0,0) where € > 0.

5 Feedback Linearization

Having satisfied all mathematical preliminaries, we proceed to calculate the coordinate trans-
formation for system (7) with the choice hy = (¢1 + ¢2)/2. Based on Eqgs. (12), (13), (14),
and (15), the coordinate transformation for this system becomes

‘1)1 = hl - 0
@2 = thl = 9
O3 = Lihy = ca1(¢; — ¢7)
1
by =hy = §(¢1 + ¢2) (18)
where ®(z) = col(®,, P2, ®3, P4) and whose Jacobian is
0 0 10
ae 0 0 01
dzx o —2C1¢1 261¢2 0 0
2 0
Application of the chain rule gives
é

01¢§ - C1¢f
275,’*(%1)2 — ¢1v1) + 2c162 ((go + Lab) B} — (go — La8)d3)
a7 (v1 + v2) — 2 (g0 + Lab) b1 + (g0 — Lab)42)

We place the above result into the form of system (11) where we define 8 and « as

— _1_ —2c101 2¢1¢2 _J 2c1e2((g0 + La8): — (9o — L09)¢2) }
P=x% [ 1 ] . { 2 (g0 + LaB)n + (g0 — LaB)2) (19)

Finally, the nonlinear system in new coordinates (11)is linearized with the feedback law
Ut | _ p-t Uy 9
L= (=) =
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where col(u;, uz) are the new input into the linearized system and 87! is

N[ 26
S S A P
(¢1+¢2) ﬁ 2¢1 ®l+2?£

As defined, the feedback law of Eq. (20) is regular since both 57! and o are smooth and
always finite.

Now consider the diffeomorphism defined with outputs h; = 8 and hy = ¢;¢,. Then the
bottom most channel of Eq. (18) becomes &4 = ¢;¢; so that Jacobian of ®(z) is

0 0 10
@ _ 0 0 01
dzx - —201 ¢1 2C1 QSQ 0 0
®2 o1 00
Consequently,
6

C1¢§ - Cl¢f
R (0202 = &) + 20162 (90 + Lab) 6} — (90 = Lab) )
—2c2900192 + ﬁ(qbzvx + d1v2)

which when placed in the form of system (11) gives 5 and « as

1 [ —2¢101 2¢10; } o= { 2¢1¢2 ((g0 + La9)¢% — (g0 — La9)¢%) } (21)

B =— '
N b2 1 —2¢290%1 92

Like the previous linearization, the well behaved form of 47! and « implies regular feedback.
=N |- fclT 2
(61 +¢3) | = o

Regardless of the choice of outputs h», the feedback linearization results in the linear system
of the general form

z1 010 0 2] 00
22 — |: 0 01 } 0 Z9 + 00 { Ui }
Z3 0 00 0 z3 1 0 U9
24 0 00 [0] 24 01
= Az + Bu (22)

where the linearized system decomposes into two subsystems, the top left of 4 into a 3 x 3
system and the bottom right of 4 into a 1 x 1 system. For the first subsystem, the equations
simplify to

Zl =7 = uy
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while the second subsystem becomes
Za=¢1+ ¢ = uy

This implies that the first input can be used to control the beam angle, 8, while the second
input can be used to constrain the actuator fluxes independently of one another.

The flux constraint we use has serious repercussions on the total power consumption
of the magnetic bearing system. Consider the flux constraint h, = (¢; + ¢2)/2 = r(¢),
where r(t) is a “dynamic bias” reference signal. The ability to alter the bias flux to achieve
better performance is highly desirable for two reasons. First, the bias flux is proportional
to bias current, greatly affecting I?R losses. Second, the force slew capacity of the actuator
is directly proportional to the bias flux. Thus, a small bias can be selected during low
disturbance periods and a higher bias during greater disturbance periods, thus limiting
power losses while maintaining actuator dynamic capacity. Unfortunately, the process of
selecting the bias reference trajectory, r(t), doesn’t appear to be simple and will require an
entirely new layer of control artifice.

On the other hand, the flux constraint hy = ¢, = €, where € is a small constant alluded
to in Section 3, discards this problem altogether. With this constraint the flux trajectory
behaves parabolically so that both fluxes always have the same sign, while the actuators react
nearly complimentarily providing an almost optimal suspension depending on the choice of e.
More precisely, the value of € is dictated by dynamic requirements and hardware limitations.
For instance the maximum flux density allowed in either actuator is related to magnetic
saturation of the iron core of the actuators B,. On the other hand, the minimum flux
allowed must be such that actuator slew capacity is sufficient. Therefore, ¢ must be selected
based on hardware limitations. This can be summarized mathematically as

émaz‘ NA hd hd NA
€2 ¢maz;¢mzn ( A ) (261‘/;,3) me Bsatme (201‘/ps> > 0 (23)

Here F,,;, is the minimum slew rate allowed based on a knowledge of the possible disturbance
d(t) (See Eq. (2)), and V,, is the power supply voltage of the amplifiers and represents the
maximum voltage available for control. Note, since € > 0, we conveniently avoid the origin
(i.e. uncontrollability) automatically.

6 Simulation

The purpose of this simulation is to ascertain the performance of the feedback linearization
in a realistic manner. First, we acknowledge that the flux, ¢, is not directly available for
measurement, but instead must be estimated in some way. Therefore it seems necessary to
first simulate the system in terms of current and displacement, then to use that information to
construct a feedback linearized system. From these “measurements”, gap fluxes are estimated
and then used to build the linearized feedback of Egs. (20) and (22). For instance, under
1deal circumstances the flux can be derived as

_ poAN (¢, 0)

_ ﬂoAaNi2(¢2,9)
2(g0 + Lag) ’

2(90 - Lae) (24)

P2

¢
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Figure 2: Startup of beam with hy = (¢; + ¢2)/2, (left), and hy; = @16, (right) with Al(-)
and A2(—)

where the coil currents ¢;; and beam angle § are available experimentally. In practice,
estimating ¢ is not very simple (Keith [7]).

The system as described has been simulated for both outputs, h,, described in this paper.
In each case, a pole placement controller with identical feedback gains was used to stabilize
the linear system. For the linearized system with h, = 1/2(¢; +¢2), the bias flux was set at a
constant of r(t) = 0.47, although, a dynamic bias might just as well have been used. For the
linearized system with output Ay = @19, € was selected using Eq. (23) such that the steady
state flux density is about 0.017 (e = 10~*) for each actuator. This choice insures that at
all times the actuators provide sufficient slew rate to react to any possible disturbances.

Figure (2) shows a startup sequence for the beam system with initial conditions of zero
voltage, current, and flux, but leaning against actuator A1l. The mechanical response of the
system was independent of the output employed. Even so, the system with bias required
greater startup flux and voltages than the system with constant product. Also, the startup
flux for the biased case crosses the 0-axis which tends to destabilize the beam since F' « ¢Z.
Any dynamic biasing system must avoid this situation. Please note that the flux trajectories
for the system with output hy = ¢;¢, are at times obscured by the zero axis even though
they are slightly positive. Also, note that Eq. (23) guarantees slew performance during
these periods. Figure (3) illustrates the system with initial conditions all zero, but with
a sinusoidal disturbance torque, d(t), of amplitude 0.8N-m and frequency 2Hz. Again, the
mechanical performance in either case was nearly identical. The difference rests with the
voltage and flux used to achieve that performance. For instance, the net RMS flux for the
biased system was 0.4 x 2 = 0.8T while for the unbiased system the net RMS was about
0.32T. Lastly, Figure (4) shows the actuators fluxes plotted against one another for both
biased and unbiased systems. The fluxes begin at the origin at startup and quickly approach
their desired trajectories where they remain indefinitely.
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Figure 3: Sinusoidal disturbance for beam with ha = (¢1 + ¢2)/2, (left), and h, = b102,
(right) with A1(—) and A2(—-)
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Figure 4: Flux trajectory for beam with #, = (614 #2)/2, (left), and h; = ¢, 6, (right) with
Al(—) and A2(~-)
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7 Conclusions

In this paper a systematic and formal mathematical procedure was used to feedback linearize
a magnetic bearing system. This procedure is a direct application of the methods illustrated
by Isidori [1] and Nijmeijer [§]. Consequently, the resulting linearization had three favorable
properties:

(i) linearizing feedback was smooth and finite, i.e. regular;
(ii) the resulting system was controllable; and
(iii) beam angular position and flux regulation achievable.

The generality of the method allows it to be applied to almost any magnetic bearing system.
As an additional benefit of the linearization, beam and flux control were decoupled. Specif-
ically, the system decoupled into a third and first order system governing the beam angle
and actuator flux respectively (Eq. 22). For the output hy = (¢1 + ¢2)/2 a dynamic bias
was possible. However, there are many difficulties in choosing the trajectory of a dynamic
bias: what signals are to be measured to determine reference and do they exist? If these
signals are available, how are they processed? how do we optimize the bias trajectory while
avoiding slew deprivation? In other words, how do we specify the behavior of the second
output hy? Thus, several barriers must be overcome before dynamic biasing becomes prac-
tical. Perhaps, the problem of dynamic biasing is not well posed. Ultimately, our goal is not
to achieve dynamic biasing, but instead to achieve some sense of optimization regarding the
use of force. If we minimize net force, power losses will necessarily be minimized, motivating
the choice of output hs = ¢1¢,. Constant flux product becomes more appealing since the
reference value € can be chosen based on well known actuator properties and the dynamic
requirements of the plant.

Future work will consider the application of linear optimal control theory to the linearized
system. However, it will be necessary to establish the relation of optimality in the z state
and optimality in the x state. If this can be done, then the vast body of literature developed
for linear optimal control will be applicable.
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