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SUMMARY

The magnetic bearing systems are intrinsically unstable, and need the feedback control of
electromagnetic forces with measured displacements. So the controller design plays an important role in
constructing high performance magnetic bearing system. In case of magnetic bearing systems, the order of
identified model can be high because of unknown dynamics included in closed loop systems - such as sensor
dynamics; actuator dynamics - and non-linearity of magnetic bearings. “Identification for control” — joint
optimization of system identification and controller design - is proposed to get the limited-order model
‘which is suited for the design of high-performance controller. We applied the joint identification/controlier
design scheme to MIMO rigid rotor system supported by magnetic bearings. First, we designed controller of
a nonlinear simulation model of MIMO magnetic bearing system with this scheme and proved its feasibility.
Then, we performed experiments on MIMO rigid rotor system supported by magnetic bearings, and the
results shows that the performance of the closed-loop system is gradually improved during the iteration.

INTRODUCTION

Active magnetic bearing (AMB) systems have been widely used for their unique advantages such as:
non-contact, lubricant-free operation, the possibility of high rotational speed, and the controllability of the
bearing characteristics. Since AMB systems always require the feedback control of magnetic force for stable
levitation of a rotor, the characteristics of AMB system is mainly determined by the feedback controller.
Therefore, the design of controller plays a significant role in building high performance AMB system.

Since nominal models of AMB systems are generally constructed ignoring the non-linearity of magnetic
force. dynamics of sensors and actuators, and the spill-over of a rotor, the identification of AMB systems is
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essential to enhance the performance of whole system. So far, identifications of AMB systems have been
performed to get experimental values of specific physical parameters. which were current stiffness and
displacement stiffness of AMB or poles of open-loop plant. However, the estimation of system parameters

in the sense of controller design law is required to achieve better performance.

In these days, the control-relevant identification has become more and more important area of control
researchers. An idea has been raised that the model identification and controller design is not performed
independently. This has led to the iterative design of model-based controller. While conventional
identification methods put emphasis upon getting accurate model, the objective of the control-relevant
identification is to get the nominal model that is suitable for the design of a high-performance controller.
Various control-relevant identification schemes [1-2] were proposed recently and achieved good results in

many industrial applications [3-4].

This paper presents the iterative identification and controller design of a MIMO rigid rotor AMB system.
A theoretical model of the system is derived, and the iterative scheme based on LQG criterion is suggested.
We verified the feasibility of this scheme through simulations, and performed experiments on a MIMO rigid
rotor AMB system. The performance of the closed-loop system is enhanced successively during iterative

designs.

MATERIAL AND METHOD

Active Magnetic Bearing

The magnetic force equation near the operating point is approximated by

F=k - i+k -z (N

where displacement is given by z, input current by /. permittivity in vacuum by g . the number of coil

turns by w~_, the area of actuator pole by A, nominal gap by ¢, . and bias current by i, . respectively.

A configuration of rigid rotor AMB model is shown in Figure I and the theoretical model of a rigid rotor
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using magnetic force equation (1) is described as follows

AMB system
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where m denotes rotor mass, J,,J ./ polar and diametrica] moment of inertia, K, displacement

stiffness of AMB, Q rotating speed, f, bearing force and :, displacement at bearing location .
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Figure 1. The model of a rigid rotor AMB system

Ignoring the gyroscopic effects, theoretical model above has 4 rigid body modes and these modes give 4

double poles in real-axis, which are symmetric to imaginary-axis.

Control-relevant identification

The basic principle of the control-relevant identification problem is described by the following triangle

inequalities, as considered by Schrama [5]:
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;]j‘c'_(‘)flsE%J(C.C»”+‘lJ(Gf,.CJ—J(GA‘C>il H)

i]J(G‘).C)” =J"": the achieved performance (4-2)
;'j((‘;‘(:)“ = /" the desired performance {4-b)
“/(G»y-c)‘ j((j,c)” = J*: the idenufication criterion (4-¢)

where G, means true plant. G estimated model of true plant. and C the controller.

Basically. the objective of all controller design is the minimization of cost function (4-a). which is the
left part of equation (). But. that is unrealizable since the exact description of a true plant G, is not

available. The aim of the control-relevant identification is the minimization of the right part of equation (4).
which means the upper bound of the achieved performance cost (4-a). It can be done by the minimization of
both (4-b) and (4-c), but the simultaneous minimization of equations (4-b) and (4-c) is impossible by
ordinary identification and control-design method. Therefore. separate optimizations over G and over C are
performed in an iterative way. The model and controller of i” iteration are obtained by

6).0] )

i+l

G,..(6) = argmin| J(G,.C) - J(G®).C|. C,.,=arg min| /(G

where 6 denotes the parameter vector that is estimated in the identification procedure and i means the

iteration step.

The iterative identification and control design procedure described above will be modified for LQ

criterion. The state-space model ofanl.QG controller is described as
X=AR+Hv. u=-Kt (6)

where t is estimated state. v system output, A Kalman filter gain. K LQ gain and A augmented

system matrix. individually.
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The control design procedure for LQ criterion minimizes a following cost function.
Ry :
Jigo = lim =3 E{¥"Qt+u"Ru} (7
I =0
The identification procedure with LQG criterion minimizes
R « .
J4 = 1v1mNZ{W:(:)(_\-(N—,v(t,e))}r{W:(:)(y(t)—,v(t-9)>} (8)
LY —poo ,=0

, which is equivalent to equation (9) in frequency domain

7 =|W(joxG,(jo) - G jw.0)) 9)
W (s) is a control-relevant weighting function in frequency domain and is calculated as
W(s)=Wep ()1 +G(5.0)C(s))” (10)

where W, " (W, (s)=H (sI-A)T(Q+ K RK)(sl —A.)'H can be calculated by Schur decomposition.

A flow chart of the iterative identification and control design procedure is described in Figure 2.
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+
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Figure 2. A flow chart of the iterative identification and control design procedure
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Frequency domain identification

The averaged frequency spectra of input and output signals are used to get the frequency response
function (FRF) of a plant. Experiments are done with 8 different excitation signals. The frequency spectra of
input and output signals are U (jw)e C"™, Y (jw)e C™, i=12.--8 and nu.ny the number of input and

output, respectively. The entire input/output data are defined as
Yo =[Y"(jo) Y (o) Y (jo)] e C™™ (1
V(@) =" (o) U (jo) - U™ (jo) I € C™ (12)
Then non-parametric transfer function matrix G(jw)e C™™ can be obtained by [6]
Gljo)y=Y(jo)U(jw)" (13)

where superscript + denotes the Moore-Penrose pseudo-inverse.

Frequency-domain curve fitting algorithm using polynomial matrix fractional descriptions (MFD) is used

for the identification of MIMO system. The transfer function G(w,8) is described via left MFD.

G(w.0) = Alw,0)"' B(w,8) ' (14)

A and B denote polynomial matrices as follows.

d+ay =1

B(E.6)= D Bp&), BeR™, AC.8) =1, +ED APEY, AeR™ (15)
i=d

i=d
where polynomial matrices are written in terms of a (scalar) polynomial basis
»a ) ( [6)

pEY=py+pE+pEi+ - +p,8

The parameters are estimated via minimizing 2-norm of each element of weighted error matrix

6 =arg min ZHE" (9)"; (17)
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The (i /)" component of weighted error matrix is parameterized as follows.

E'(@.8) =W, (@)A@.6)" F|6" (@) - A(0,6)G™ () - B (0.8)]W" (@) (18)

where AG.0)=1,, -A. )=o) [4] 4 - Al B =) By B - 8]

vw)=[p"Ew) pE@) P G ], 0@, =@ [P Cw) pEwy p" (&, )]

The equation (17) above are converted to general least squares form.

6 =arg min Y|, - £, 6] (19)
Y, is denoted by
. GH Gl: Gln le
(Yul (wk)}r -Gll G:: Gln Wllj
Yowy=| 1 [ where Yi=[wy wr .. owrl|Y YT o G0 W (20)
{Y“f' (m")} Gpl GP3 . G™ W
and P_is
{Pr(w))
Piwo=| i |=w,e@[w)y ey (G W) e @1
(P (@)}

where W, (@) =W,(@,)AE.0)", (P'@,)) =W, 8[W) ®y (G-W, ®¢], ® is Kronecker product.

First, SK algorithm based on QR factorization [7-8] estimates the approximate value of system parameter.
Then, using this approximate estimate as the initial value, nonlinear least square problem is solved with

MATLAB optimization toolbox function [9].
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RESULT

Simulations

Eight different excitation signals are generated using multi-sine of random phases. In general, the
amplitudeof anexcitation signal should be as large as possible to ensure sufficient signal-to-noise ratio(SNR)
Except safety or economic reasons, there are two important limitations of input amplitude on AMB -
linearity region and slew rate of magnetic actuator. The slew rate of magnetic bearing rotor system can be
described by (22)

di 2g, .
Z=m[vs — (i, +D)(R. +R, +Repr)] (22)

where V is supply voltage, R coil resistance. R, the resistor connected to FET, and R. FET resistance.

A nonlinear AMB rotor model is constructed by using MATLAB Simulink and the proposed control-
relevant identification scheme is applied through the flow chart of Figure 2. Estimated model parameter
converges as iterations are repeated. Although identified model differs from theoretical model, it can be
considered as the approximated model that is suitable in the control-design point of view. The eigenvalues
of identified plant are given in Table | and the values of cost function J** and J“ at each iteration are
shown in Table 2.

Table 1. Eigenvalue of identified system matrix A (Simulation)

I 2¥ 3" 4"
eigenvalue | eigenvalue | eigenvalue | eigenvalue
Nominal 627.68 -627.58 493.05 -493.05
Stepl 649.27 -737.29 550.50 -608.09
Step2 648.83 -791.93 552.66 -633.86
Step3 648.83 -791.93 552.63 -633.87

Table 2. The cost function value (Simulation)

Stepl Step2 Step3
J 4.69 4.58 4.58
Jv 0.63 0.58 0.58
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The parameters of identified plant converge in 3“ step. and the cost function value of the achieved
closed-loop performance /*" decreases. This results from the reduction of the identification cost function.

J:d .

The number of iteration is only two, which is relatively small in general control-relevant identification
scheme. This is because control-relevant schemes are effective in case that high-order plant should be
approximated to low-order model for the design of reduced-order controller. The simulated plant can be
sufficiently described as the model of 2nd order. so the decrease of cost function is not drastic. But the

enhancement of performance still can be shown.

Experiment

Thrust

Bearing Induction Motor

(c) (b)

Figure 3. Rigid rotor AMB system (a) assembly (b) elements (c¢) schematics
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A rigid rotor AMB experimental setup consists of two AMB units with built-in cylindrical cabaéitive
sensor, thrust bearing. rigid rotor, and induction motor, as shown in Figure 3 [10]. The AMB unit is
designed for ease of assembly like a commercial bearing. The cylindrical capacitive sensor and electro-
magnetic actuator are embedded in the housing of the AMB unit as shown in Figure 3(b). In case of wiring,
small connectors are used for the convenience of assembling and machining. The rotor has outer radius of
39mm at the AMB unit and the maximum rotational speed is 60000 rpm. The water jacket is embedded
around 3kW induction motor. TMS320C44 40MHz DSP board with 8 ch. 16 bit, 200kHz AD/DA is used.

Experiments are performed through the same procedure as simulation. The eigenvalues of the identified

system matrix are shown in Table 3, and cost function values are shown in Table 4.

Table 3. Eigenvalue of identified system matrix A (Experiment)

1;( 2nd 3:1]7 4m
eigenvalue | eigenvalue | eigenvalue | eigenvalue
Nominal 627.58 -627.58 493.05 -493.05
Stepl 629.12 -618.82 559.66 -565.99
Step2 612.84 -588.46 533.88 -544.18
Step3 613.82 -588.07 541.99 -533.62
Step8 616.58 -587.55 535.76 -537.47
Stepl0 615.90 -592.75 534.38 -533.95
Table 4. The cost function value (Experiment)
Nominal | Stepl Step2 Step5 Step8 Step10
J o 9.33 7.28 7.26 7.24 7.24 7.22
JY 1.25 0.813 0.591 0.544 0.551 0.539

Measured FRF and identified transfer functions are shown in Figure 4. Because of unknown dynamics of
rotor system and other factors, nominal transfer function is not matched well with measured FRF of system.
As shown in Figure 4, the identified model (step 7) with the control-relevant scheme does not look better
than the model estimated without control-relevant weighting (step 1). But the decrease of the achieved cost
function J“* (Table 4) proves that the identified model is appropriate for high-performance controller
design. Figure 5 shows the relative error of the closed-loop transfer function, T{(s) between real and
identified plant. The relative error decreases as the iteration steps increase. The experimental results confirm

the simulation results that the iterative scheme can enhance system performance.
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Figure 5. Relative errors of closed-loop transfer function
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CONCLUSION

We applied the joint identification/controller design scheme to MIMO rigid rotor system supported by
magnetic bearings and the performance of the closed-loop system is improved sequentially during the
iteration. Although the rigid rotor AMB system is not significantly high-order plant, the control-relevant
identification method gives better performance. In case of high-order system, such as flexible rotor

supported by AMB, the improvement of performance may be more conspicuous.

For the future work, the control-relevant identification with other robust confrol design scheme - H_ or
u control synthesis — will be developed. Also a considerable amount of work is needed to apply this scheme

to a flexible rotor AMB system.

ACKNOWLEDGEMENT
This work is supported by Turbo and Power Machinery Research Center and Institute of Advanced
Machinery and Design in Seoul National University.
REFERENCE

1. Z. Zang; R.Bitmead; and M. Gevers: “Iterative Weighted Least-squares Identification and Weighted
LQG Control Design”, Automatica, 1995

(89

R. G. Hakvoort; R. J. P. Schrama; and P. M. J. Van den Hof: “Approximate Identification with Closed-
loop Performance Criterion and Application to LQG Feedback Design”, Automatica, 1994

3. R. A. de Callafon; P. M. J. Van den Hof; and M. Steinbuch: “Control Relevant Identification of a
Compact Disc Pick-up Mechanism”, Proc. of the IEEE Conference on Decision and Control, 1993

4. P. Michelberger; J. Bokor: L. Palkovics; E. Nandori; and P. Gaspar: “Iterative Identification and Control
Design for Uncertain Parameter Suspension System”, IFAC Transportation Systems, 1997

166



R. J. P. Schrama: “Approximate Identification and Control Design with Application to a Mechanical
System™, Ph.D. Thesis, Delft University of Technology, 1992

w

6. R. Pintelon; P. Guillaume; G. Vandersteen; and Y. Rolain: “Analyses, Development, and Applications
of TLS Algorithms in Frequency Domain System Identification”, SIAM J. Matrix Anal. Appl., 1998

7. D. S. Bayard: “High-order Multivariable Transfer Function Curve Fitting: Algorithms, Sparse Matrix
Methods and Experimental Results”, Automatica, 1994

8. R. A. de Callafon; D. de Roover; and P. M. J. Van den Hof: “Multivariable Least Squares Frequency
Domain Identification Using Polynomial Matrix Fraction Descriptions”, Proc. of IEEE Conference on
Decision and Control, 1996

9. MATLAB Optimization Toolbox: User’s Guide, MathWorks, 1997

10. H. Ahn; S. Lee; and D. Han: "Precision AMB Spindles with Cylindrical Capacitive Sensors”, Proc. of
10th World Congress on TMM, 1999

167



