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SUMMARY

Switched reluctance type bearingless motors have been proposed. The principle of radial force

generation is explained on a stator with differential winding configurations. The radial force is a

function of the radial force winding current and the motor current, as well as the rotor rotational

position. If salient poles are unaligned, the radial force is the minimum. In this condition, fringing

fluxes play an important role. In this paper, the theoretical equations of radial forces are derived

with a close examination of the flux distribution. Based on results of FEM analysis, a simple

mathematical equation is proposed to express fringing fluxes neglecting magnetic saturation. The

radial force and current relationships are derived with the fringing effects. The derived equations

are found to be effective especially at unaligned positions.

I. INTRODUCTION

Recently, various bearingless motors have been proposed, for example, reluctance [1],

induction [2-4], permanent magnet [5-6], etc. These motors each have nice characteristics of their

own. Recently, there has been interest in switched reluctance motors. For very special

environments, switched reluctance motors have superior possibilities, because switched reluctance

motors have several advantages such as fail safe, rotor robustness, low cost and possible operation

in high temperatures or at high rotational speeds [7-8].

Moreover, switched reluctance motors have nice possibilities as bearingless motors. In

principle, torque is generated by magnetic attraction of rotor and stator poles. In this process,

significant amounts of radial force are generated. Thus, in practice, switched reluctance motors are

famous for noises and vibration because fairly high radial force is exerted in the air-gaps, it is very

possible to take advantage of these high radial forces for bearingless motors.
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Switched reluctance motors have a stator with concentric windings around salient poles. Thus,

if currents in the concentric windings of each pole are controlled independently, both radial force

and torque can be controlled. To the author's best knowledge, this idea was originally proposed

by Prof. Higuchi [9] in 1989. The same idea can also be seen in [10]. The ideas are good for only

low rotational speed motors such as torque drives and positioning drives. In the case of power

conversion, rotational speeds are high so that motor back E.M.F. is high. Thus, it is unavoidable

to increase the voltage ratings of drive inverters to have fast control of radial forces. In practice,

voltage and current ratings of drive inverters should be minimized to be cost competitive. Then,

instantaneous current control is difficult at high rotational speeds. The current control can be fast

enough for torque control; however, it cannot be fast enough for radial force control required in

magnetic suspension.

Professor Higuchi also proposed a stepping motor with magnetic suspension windings [ 11 ].

His idea took advantage of the multi-pole per stator tooth configuration in variable reluctance

motors. Radial force is not influenced by motor current due to having several poles for a stator

tooth. This motor is good for positioning drives as he proposed, however, not for power

conversion because of many poles, high inductance as well as high leakage fluxes. For power

conversions, switched reluctance motors have stator and rotor combinations of 12/8, 8/6, or 6/4,

with only one pole for a tooth.

It is important to apply recent ideas of differential windings of bearingless motors to switched

reluctance motors to be practical and reduce voltage and current required for magnetic suspension.

A stator winding configuration with differential windings for switched reluctance motors with one

pole for a stator tooth has been proposed by the authors [12]. Principles of radial force production

were explained. The relationships between radial force and current were found to be dependent to

rotor rotational positions unlike Prof. Higuchi's [11]. If rotor and stator poles are aligned, radial

force is effectively produced. However, radial force is low at unaligned positions. For successful

magnetic suspension, radial force must be controlled at any rotational position. Successful control

can then be realized by integrated digital controllers. Thus, analysis of unaligned positions is very

important.

In this paper, effects of fringing fluxes are examined using FEM analysis. Then, a simple

mathematical equation is proposed for further analysis. Relationships between radial force and

current around unaligned positions are derived. These relationships are confirmed in experiments.
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II. PRINCIPLESOFPROPOSEDMACHINES

A. Configurationof astatorcoreandwindings

Fig. 1showsa crosssectionof statorandrotorcoreson a prototypemachine.The iron cores
of astatorandarotoraremadeupof laminatedsiliconsteelwhich is simply stampedout to salient
poleform. Thelaminatedsiliconsteelhasa thicknessof 0.35mm. The stacklengthis 50mm. It
isnotedthatthestatorhas12polesandtherotorhas8 poles.

Fig. 2 showstheA-phasewinding configuration. Themotorwinding current im_flOWSinto
four coils connectedin series. Onecoil is threeparalleledwires havinga diameterof 0.8mmand
14turnsin series.On theotherhand,radialforcewindingcurrentsi_ andi_ flow into two coils,
respectively. Thesecoils are separatelywound aroundeachstatortooth. Thesecoils are two
paralleledwires havinga diameterof 0.8mm and 11 turns in series. The B-phasewinding
configurationis situatedon one third rotationalpositionof the A-phase. The C-phasewinding
configurationis situatedon two thirdsrotationalpositionof theA-phase. Theaxesa_anda2of a
perpendicularcoordinatecanbedefinedbasedon theA-phasewindingconfiguration.In this case,

theaxesotand I_ arealignedwith a1anda2,respectively.In addition,theaxesof coordinatesbl,
b2,c_andc2canbedefinedbasedontheB- andC-phasewindings,respectively.

B. Principlesof radialforcegeneration

Fig. 3 shows the principlesof radial force productionof the proposedbearinglessmotors.
Statorteethand rotor teethof this figure aresituatedin thealignedposition. Thesymmetrical4-
polefluxesareproducedfrom the4-polemotor windingcurrentimp.Thesethick solid lines show
theinstantaneousflux directionof the4-polemagneticfield at a certainmoment. Thesymmetrical
2-polefluxesarealsogenerated"from 2-poleradialforcewinding currentisa_. Thesebrokenlines
showtheinstantaneousflux directionof the2-polemagneticfield for radialpositioncontrol.

g

(a) Stator (b) Rotor

Fig. 1 Cross section of a prototype machine.

• i_i+

I

ma --

and a_

_and al

Fig. 2 A-phase winding configuration.
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Therotorradialpositioncontrolwith anegativefeedbackloop can be explained as follows. If

the rotor moves toward the negative direction in the (x-axis from the stator center, the flux

distribution in the air-gap is unbalanced. A radial force toward the negative direction in the (x-axis

is generated. In order to balance with this force, a positive current isa_ is fed in the 2-pole radial

force winding, which produces the 2-pole fluxes as shown in Fig. 3. Therefore, the flux density

in the air-gap 1 is increased, because the direction of the 2-pole fluxes is the same as that of the 4-

pole fluxes. On the contrary, the flux density in the air-gap 2 is decreased, as the direction of the

2-pole fluxes is opposite to that of the 4-pole fluxes. This superimposed magnetic field results in

the radial electromagnetic force F acting to the rotor in the or-direction.

On the other hand, a radial force opposite to the u-direction can be produced with a negative

current isa_ in the 2-pole radial force winding. Moreover, a radial force in 13-direction can be

produced by 2-pole radial force winding current i_ 2. Thus, radial force can be produced in any

desired direction.

The above is the case of A-phase, in the same way, this principle can be applied to the B- and

C-phase. The direction of a radial force on the B- and C-phase differs from that on the A-phase.

Therefore, transformation of coordinates is required. In switched reluctance motors, all three

phases are not excited at one moment. Rather, only one out of three phases is excited at a low

speed. If at least one of three phases is excited, the radial force can be produced in any desired

direction with the proposed winding configuration. It is noted that the air-gap flux density depends

on the rotor rotational position. The stator and rotor poles are aligned in Fig. 3. High radial force

can be produced in this condition, however, radial force is reduced at unaligned positions. At

unaligned positions, fringing fluxes play an important role.

III. DERIVATION OF INDUCTANCES

A. Magnetic equivalent circuit

Fig. 4 shows a cross section of a prototype machine superimposed by a magnetic equivalent

circuit and each phase winding configuration. Voltage sources show magnetomotive forces

(MMFs) of the 4-pole motor windings and the 2-pole radial force windings, in addition,

permeances of air-gaps are expressed as resistances.

Fig. 5 shows a magnetic equivalent circuit only for the A-phase, which is extracted from Fig.

4. The definitions of Fig. 5 are as follows:

N m number of turns of the motor winding.

N b number of turns of the radial force winding.

i,,. an instantaneous current of the motor winding.

isa_ an instantaneous current of the radial force winding on the a,-axis.

isa2 an instantaneous current of the radial force winding on the a2-axis.

P_-Pa4 permeances of air-gaps at A-phase winding poles.

_~ _magnetic fluxes of each tooth.
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Only A-phasemagneticequivalentcircuit is used to have a simple calculation in this paper.

This is possible .because switched reluctance motors have little mutual inductance among the A-,

B-, and C-phases.

Air-gap2 Air-gap 1 _,,

/_.P laX

Fig.3 Principle of radial force generation.

Pa4

Pal

"P_ _.__ (x

Thick solid lines " Magnetic equivalent circuit.
Broken lines - M.M.F. and permeance of A-phase.

Fig.4 Winding configuration and a magnetic equivalent circuit.

± _L_ _L_

< <L

i

by radial force winding

iFlux by motor winding

and a_

Fig.5 A magnetic equivalent circuit of A-phase.
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The following equations (1)-(3) are given from Fig. 5, because a sum of the magnetomotive

forces in each branch is equal to another one.

_a2 Nmim a + Nbisa2 _ _°l

6__23+ Nmim a _ Nbisat - q_,,l

_a4 Nmim a _ Nbisa2 _ _al

Because a

-- -- + Nmima + Nbi_a I (1)

- -- + Nmim, , + Nbisa t (2)

_ __ + Nmima + Nbisa I •

sum of the magnetic fluxes is equal to zero, it can be written as,

(3)

_a| + ¢a2 + {_a3 + _a4 = O. (4)

O,x-0.4 can be derived from the equations (1)-(4) as,

-- Pal [2mm(Pa2 + Pa4)im a + Nb(Pa2 + 2Pa3 + Pa4)isal _ Nb(Pa2 _ Pa4)_sa2 ] (5)p

4°2 = + [2N/(P_, + P,,3)i,_ + Nb(P,,, - Pa3)isal - Nb(P.I + Pa3 + 2Pa,)'sa2] (6)

- Pa3 [2Nm(Pa2 + Pa4)im a _ Nb(Zpa ' + Pa2 + Pa4)isa,- No(Pa2 - Pa4)isa2] (7)0o - p

qka4 = _[2Xm(Pat + P_3)i,,_ + Ub(Pal - P,_3)i_l + Ub(Pa, + 2P,, 2 + P_3)i_21 (8)

where P is a sum of the permeances P.t-P.4.

Next, in order to calculate inductances, it is required to derive flux-linkages of each winding

from the above equations. Consequently, the flux-linkage xg, corresponding to motor winding

current i_, can be written from Fig. 5 as,

V,,_ = (- (_al + qk,,2- qka3 + qk,,4)Nm . (9)

Substituting the equations (5)-(8) into the equation (9) yields,

Vma = 4Nm2(pal + P"3XPa2 + Pa4) ima + 2NmNb(Pa, - Pa3)(Pa2 + P,,4) .tsar

P P (10)

2NmNb(Pal + Pa3XPa2 - Pa4) isa2 "
P

Similarly, the flux-linkages _,-,1 and _a of the radial force windings can be written from Fig. 5 as,

_sa2 = (-- #a2 +#a4)Nb • (12)

Substituting the equations (5)-(8) into the equations (11) and (12) yields,

Nb2 {P,,, (P,,2 + 2a3 + P_4) + P_3(2P,,, + Pa2 + Pa,_)} •

_tsa I = p isal

(13)

+ 2NmNb(P,,t - Pa3)(Pa2 + P,,4) ira,, _ Nb2(Pat - Pa3XPa2 - P,_4) is,, 2
p P
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Nb2{Pa2(Pa, + Pa3 + 2Pa4) + Pa4(Pal + 2Pa 2 + Pa3)} .

p tsa2

2UmUb(Pal + Pa3XPa2 - Pan) ima Ub2(p,a- Pa3XPa2 - Pa4) .
-- _ lsa I •

p P

(14)

Self-inductances and mutual inductances are given from coefficients of in, i_t and is,a in the

equations (10), (13), and (14).

Lm,, = 4Um2(pal + Pa3XP_2 + P_4)
p (15)

Lsal _. Nb2{Pal( Pa2 + 2Pa3 + Pa4) + Pa3(2Pal + Pa2 + Pa4)}

p (16)

Zsa2 = Nb2{Pa2(Pal + Pa3 + 2Pa4) + Pa4(Pa, + 2Pa 2 + Pa3)}

p (17)

M(,,_,so,) 2NmNb(P_I - P,,3XP,_2 + ea4)= (18)
P

where,

m(ma,sa2 ) =_ 2N.jVb(P_, + P_3XP_2 - P,,4) (19)
P

M(sal.s.2) =_ gb2(eal - ea3Xea2 - ea4) (20)
P

L=

M(,,.a,_)

M(,_.,_2)

M(_,_ _)

the self-inductance of motor winding "ma".

the self-inductance of radial force windings 'sal' and 'sa2'.

the mutual inductance between motor winding 'ma' and radial force

winding 'sal'.

the mutual inductance between motor winding 'ma' and radial force

winding 'sa2'.

the mutual inductance between radial force winding 'sal' and radial

force winding 'sa2'.

B. Assumption and calculation of the permeance

Each permeance shown as PaI~P_ can be divided into three parts of permeances P_~P3 as

shown in Fig. 6. P2 and P3 represent fringing path permeances. Pt represents the permeance

between poles. The following assumptions are considered in calculation.

(1) Magnetic saturation can be neglected.

(2) The rotor displacement is small enough compared with the air-gap length.

(3) Flux paths which do not link a rotor can be neglected.

(4) Flux paths between stator poles and rotor interpolar area can be neglected.
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(5) Fringingfluxesonly at thealignedpositioncanbeneglected,becauseanair-gap
lengthis veryshort.

The assumedmagneticpathsin thepreviouspaperaremadeup of straightandcircular lines.
Onthecontrary,theassumedmagneticpathsin this paperarecomposedof elliptical linesusing a
variable'k'. In the previouspaper,k is equalto 1. However, the variablek is dependentto the
rotor rotationalposition andthe air-gaplength. The definitions of variablesin Fig. 6 can be
summarizedasfollows;

ll

18

r

t

dt

dP 2, dP3

rotor rotational position.

air-gap length.

radius of the rotor poles.

a position on a rotor circular surface.

a derivative of t.

permeances of the infinitesimal width of the assumed magnetic path.

In Fig. 6, the fringing flux path has a width of dt and kdt at rotor and stator surfaces,

respectively, k is a constant to determine the shape of ellipse. Thus, it is important to find the

value of k. Fig. 7 shows flux paths obtained from FEM analysis. Fig. 8 shows an enlarged

magnetic path at the pole edge. k can be calculated from each flux path in Fig. 8. FEM analysis is

carded out with the air-gap lengths of 1001.tm, 2201.tm and 3001.tm to see the dependence of

fringing fluxes to the air-gap length.

Fig. 9 shows the relationship between k and t derived from results of FEM analysis.

Fig. 10 shows the relationship between k and t/18.

Regardless of 1r k is found to be dependent to only t/1r Next, an average length of the flux

path can be written with a simple approximation that an average of lengths of the semimajor and

semiminor axes of the ellipse represent radius as,

t= + + (21)
where I is an average length of the magnetic path. This equation can be also written as,

l, zr(1 +t(l+k)l (22)
lg 4 lg "

Fig. 11 shows the relationship between l/lg and t/lg. It is seen that all the points are located in

aline. The relationship between 1/1s and t/18 can be approximated such that 1/1s and t/18 have

linear relationships. A simplified equation can be written as,

1 t _r
-- = c-- + -- (23)
lg lg 4

where 'c' is a constant of 1.49. Substituting the equation (23) into the equation (22) yields,
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p., ._// ,¢

dPz_,_._ /=_ kdt

/_t -_dp_+kt / , /

dt : . z

t O a _ " P3

rotor
rotatory direction

Fig.6 The assumed magnetic paths and permeances P_-P3.
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Fig. 7 Flux distribution.
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Fig.8 Enlargedfh_ paths.

*z!/
,/,/

4
k = --c-1.

z (24)

A cross section area of dP_ can be approximated in the following equation (25).

S--

2

_,here 's' is the cross section area of dP 2, 'h' is a stack length.

between dP 2 x 1_ and t/l_ can be written as

dP 2 x l g /.tO x s- xt_ (26)l

where _ is the permeability in the air. Substituting equations (22)-(25) into equation (26) yields,

(25)

Therefore, the relationship

dP 2 x lg _ 'u°t'tc 1-- X dr.
t (27)

z 4c--+z
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Fig. 11 Relationship between l / l_ and t / lg. Fig. 12 Relationship between dP2 × l_ and t / l_.

Fig. 12 shows the relationship between dP 2 x 18

theoretical curve corresponds to the results of FEM analysis. Therefore, it is

assumption of the equation (24) is effective. The equation (27) can be written as,

dp 2 8 ,uohc 1-- X at.

z 4ct + z lg

and t/1s . From Fig. 12, it is seen that the
noted that the

(28)

The permeance P_ of the air-gap between a rotor and stator poles can be derived as,

/]1 = (29)
lg

where r is a radius of rotor poles. The permeance P2 can be calculated from the equation (28) as

= frO,
P2 _o dP2" (30)

Substituting the equation (28) into the equation (30) yields,

/°2 2Poh (4cr8,, + zlsl (31)
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Similarly, the permeance P3 can be derived considering symmetrical fringing flux paths as

2/zoh lnI 4CrOa +zig_)P3 : --_ k _ " (32)

The total permeances P^ is the sum of P, ~ P3, thus,

PA = Pl + P2 + P3. (33)

Therefore, from the equations (29) - (33),

PA /z°hr(_22-O') 4t_,h ln(4crOa +zig')

: ,= +7- 9 (=4)
It is noted that P,,, P,:, P,3, and P_ are the equal to P^

center.
if a rotor is positioned at the stator

C. Derivation of inductances

Substituting 1o _+o_ and 1o _+ [3 into the air-gap length lg in the equation (34), the permeances

P,_ - P,4 are given, considering rotor radial displacements as,

: Bohr(z -12lo2120a Xlo + a) +-----_4/'z°hIn((,.4CrOa(l°z--l_+ a) + z l°2-1., (35)
Pal

: _,@r(=- 120,)(1o- P)+4,.ohl.(4crO.(1o:,a)+=to2P.2
12lo: z (, zlo2 ) (36)

Pa3 p°hr(z - 120, Xlo - a) 4uoh ln¢4crOa(l° - a) + z lo2`

Pa4 B°hr(z- 120a XI° + r) 4'u°h" (4crOa(l° + r) + = l°2_
: i_ +--,./- -_z k zlo

where 1o is the average air-gap length, o_ and [3 are the rotor displacements in the

axes, provided that 1o is large enough to (x and [3.

etluations (15)-(20) yields,

(37)

(38)

or- and 13-

Substituting the equations (35)-(38) into the

( - C 4crOa_lL_ = 2Nm 2 _t°hr(617 120a) + 8_-_°h ln 1+_-o j j

-(,, hrl--lo_ _ o.. 1. f A..,_ hh

= m 21 _'o" t ..... al °/"0" l +""'VailLsa I b k _17 +--l._r I --Z-_O J,)

L.,a2 :Nb2(/_°hr(6-120") _-_ ( 4crO'11lo + tn l+ _rlo ))

(39)

(40)

(41)
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M(,,,a.sal) = NmN b
,_o"r(=-'=Oo),,+",_o_t.(4crOo(_o+_)+=_o'-II

.o"r(.-''o)
-6;-_ P+-;- _ 4-7_rOalo+=t? JJ

(42)

(43)

(44)

IV. DERIVATION OF RADIAL FORCES

A. Derivation of the theoretical equations of radial force

It is possible to construct a 3 x 3 inductance matrix from the derived self-inductances and

mutual inductances in the equations (39)-(44). The 3 x 3 inductance matrix can be written as,

L= M(==,=,_M_=.=o=1
[q- M(=,=o,_L=., MI=o=,=.=I

M(._,=.2) M(==I,=.2 ) L==I

where, [L] is the 3 x 3 inductance matrix. The radial forces F_ and F_

derivatives of the stored magnetic energy with respect to displacements

The stored magnetic energy can be written using the equation (45) as,

Wa = 2['ma isal Isa2l[ L] sal

Lts_2J

where W, is the stored magnetic energy. Thus, the radial forces F_

substituting the equations (39)-(44) into the equation (46), yields,

(45)

can be derived from the

ot and [3, respectively.

_ t_,V,, _ N N (l't°hr(z - 120a) 32PohrcOa
I' 2'

Fa _ rnb_ 61_ ;r(4rcO-_o+-_--+zl o

(46)

and FI_ are given,

I] i mai sal

C_4/'a N N (l_°hr(z- 120a) 32ktohrcOa ,2') imaisa2

Fp - --_ - . b_ _l 2 4 z(4rCOa(lo + fl)+Zto )) •

(47)

(48)

The following points are clear from the equations (47) and (48).

(1) The radial forces F,, and Fa are directly proportional to the products of motor winding

current i=. and radial force winding currents i.. 1 or is. 2. Therefore, the radial forces can

be controlled by radial force winding current. Let us define a radial force constant K_ as

F,, / (i._iu0 and FI_/ (imi,.2).
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(2) TheradialforceconstantKf is dependentonrotor rotationalposition 0a. The first termin
theparenthesesoriginatesfrom thepermeancebetweenrotor andstatorpoles. Thus, the

first termis dominant,anddecreaseslinearlyas 0a increases.At 0_= x/12, thefirst term

becomeszero. Notethattheequations(47)and(48)arevalid only 0 < 0_ < x/12 (15deg).

If 0_ > x/12, then the first term is zero. In this condition, rotor poles are not facing stator

poles. The second term corresponding to fringing paths now plays an important role.

(3) In low speed operations, motor current is usually injected during 0 _< 0a < 15deg to

produce torque efficiently. Thus, it is important to examine Kf in this condition, especially

0_ is around 15deg.

B. The measurement and the examination of the radial forces

A test machine was built and the magnetic suspension realized with DC current in A-phase

windings. In this situation, weights are hung to apply radial force as shown in Fig. 13. An

average current in the radial force windings is measured. In every rotational position, weights are

increased and then decreased while the average current is measured. The hysteresis influence is

small enough to obtain relationships between radial force and radial force winding current. Then,

Kf is obtained from the Least-Square Error method. A ratio of lengths from the fulcrum to the

mechanical force application point and the central point of the active area is 2.316:1. This ratio is

considered.

fnrce anically) '/._/, _ ]5 [deg]_ __ applied point _5 /(mech

_)]p / _:=_--_--0 /

alley _dS_!!_ ron

weight _J--_ _ [---]

[4:z:_] / / _ j-_stator _ rotationa

active area _rL.rT--_ot o r I

(electrically) I I ..... p.osition
"' t.-- fixer

_ful_ru m (bearing)

Fig. 13 A model of the experiment.
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Fig. 16 Relationship between F_ and i,,1.

Fig. 14 shows the relationship between the radial force constant Kf and the rotor rotational

position 0,. Fig. 15 shows the magnification in a range of 0, = 12.5~15deg. Fig. 16 shows the

relationship between the radial forces F,_ and the radial force winding current i_1 at 0, = 14.5deg.

The theoretical value in the previous paper [12] is also drawn. This value is originated from only

the In'st term in the parentheses of the equations (47) and (48). It is seen that the proposed

calculation is especially effective in a range of 0, = 13~15deg. As the accurate inverse function of

Kf is required in controller to keep constant loop gain, while a test machine is rotating, accurate

theoretical estimation is important. The second term in the parentheses is found to be effective to

derive the radial force constant, especially at unaligned positions.

V. CONCLUSIONS

In this paper, the theoretical equations of radial forces are derived with a close examination of

flux distribution. Based on results of FEM analysis, simple mathematical equations are proposed

to express fringing fluxes. Relationships between radial force and current around unaligned

positions are derived with the fringing effects. It is stated that the derived equations are especially

effective at unaligned positions. These relationships are confirmed in experiments.
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