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SUMMARY

Nonlinear robust control is a development of the modern robust approach to the stability of
linear control systems. For nonlinear systems, this approach was used in the theory of absolute
stability. The absolute stability methods are bounded as a rule by the class of stable SISO-objects.
However, magnetic suspension technology deals with unstable and MIMO-objects in the general
case.

Design of stabilizing systems for magnetic suspension may effectively be carded out on the
basis of a proposed approach to nonlinear robust control synthesis. The proposed approach is
based on the criterion of the Maximum Region of Attraction for stabilizing equilibrium in the phase
space of a closed loop system. Actually the same criterion is used in absolute stability theory
whose methods allow relation of the topological identity, the phase space structure of the system
with the nonlinear control, to the phase space structure of the linear system.

The analytical solution of the synthesis problem in a form of a nonlinear robust control law
allows the determination of the dependence of the optimal regulator's structure and parameters
from the objects. The theoretical background of using regulators has been added to the base of the

proposed synthesizing approach and new nonlinear robust control laws for stabilizing magnetic
suspension systems have been found.

One of the new control laws is the control of angular motion of a shaft in magnetic bearings
with gyroscopic effects. Finding this law required the development of the suggested approach
from unstable to stable objects having conservative stability.

INTRODUCTION

Taking into account the realistic restrictions of the control action makes a mathematical model

of a stabilizing system nonlinear. It results in an attractive region concept for a stabilizing
equilibrium in the phase space of a closed loop system. In a nonlinear system, unstable periodic
motions are the main cause of inadmissible reduction of a region of attraction, as shown in [1].

In order to avoid these unstable periodic motions, the original approach to synthesizing control
laws for unstable objects is suggested in [2]. In this approach, the control law is synthesized from
the criterion of attaining the Maximal Region of Am'action (MRA-criterion) of stabilizing
equilibrium in the phase space of a closed loop system.

This research has been done under support from the RBRF (project 97-01-00669)
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The synthesizingresultsgive thetheoreticalbackgroundfor manyregulatorsusedin magnetic
suspensiontechnology[3]. As shown in [4] for the simplest magnetic suspension, a control
synthesized from MRA-cdterion satisfied a number of conventional quality performance criteria
simultaneously.

The shaft magnetic suspension attracts researchers [5] by its practical significance and as a
more complex object having a control system which stabilizes the shaft position in three
translational degrees of freedom and two angular ones. Synthesis of nonlinear robust control of a
shaft magnetic suspension has been done in [6] using a series of simplifying suppositions. One of
these suppositions is the neglect of the gyroscopic effect. As shown in [7], increasing the shaft

rotation speed leads to stability loss of the magnetic suspension stabilizing system. In order to
account for the gyroscopic effect one may accept the simplified supposition about consideration of
only angular degrees of freedom of the shaft with respect to its mass center for synthesis of
restricted control of the shaft magnetic suspension with accounting for the gyroscopic effect.

PROBLEM STATEMENT

Under the accepted supposition, the shaft in the Active Magnetic Bearings (AMB) may be

considered as a solid with the fixed point as shown in Fig. 1. The fixed point O of the shaft

coincides with its mass center. The origin of the fixed coordinate system O, _, rl, _ is placed at

this point. The mobile coordinate system O, _', rl', _" is connected with the principal axes of the

shaft and axis O, _' is directed along the axis of its rotation. The position of this axis is given by

angles 0_, 0: in the fixed coordinate system. The control forces from AMB F_ are found in two

planes where the AMB are placed as shown in Fig. 1. Let these planes be placed symmetrically

with respect to point 0 at the distance +__l/2.

In the case of small angles, the shaft dynamics are given by following equations

ld20t dO2
al_o, = _l ( Fl - 1='3)

" dr: + 4 2

jd202 dOl al20, _ = 1
dt 2 Jef_-_ 4 -8 (F,z - I._)

where J¢ = J,_ = J, J; are the moments of inertia for the axial symmetrical shaft with respect to

principal axes, _'I is the angular speed of the shaft, supposed as constant, m is the mass of the
shaft, a is the negative stiffness of the AMB, l is the distance between planes of top and bottom

AMB. It is supposed also that control actions are restricted I F_.,_[ < F *.

By introduction of the time scale t,,, = '_J the mathematical model of the control object may

be presented in the standard dimensionless form

dx
-- = Ax -t- Bu
dt (t)

(0oo)(oo)I 0 0 -H B = -i t)
A= 0 0 0 i " 0 0 "

0 III 0 0 -t
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___+,

where the vector of phase coordinates has the following components:

dO t dO,

xt = t)t, x,_ = t,,,--d-i- , x3 = 02, x,i = t,,_ ,It

H = _ is a parameter describing the ratio of the inertia moments of the shaft and the rotationJ

speed, tq = _ u2 = _ are the control actions restricted by the magnitude u + F+ t,
m.qlt _ mgll -- rn211

Using the symmetry of equations (1) allows us to reduce its order in half by the complex variables

Zl = Xt + iX3; Z2 = X2 + iX4; V -- tt I + iu2, (2)

where (i= v/-L-]-).

the standard form of the complex phase space

dz
-- = Acz + Bey,
dt

As a result the mathematical model of the object may be presented either in

(3)

or as a differential equation of second order

d2z: ., dzi

dt 2 _ri -- -- zt = --V (4)

with respect to the complex variable zl. These equations contain the complex function of
admissible controls v, whose components u_ = Rev, u 2 = Imv are supposed as the simplest

piece-wise linear functions as shown in Fig. 2

U k._O- _ I,=  3o-I < = > u+.

ul,2 = -u +,-u + >/3_r, a = C(H)x,

(5)

where 13 is some scalar and C(H) is some feedback control matrix which depends on H. The

problem consists in synthesizing this function as some dependence from the state space variables
of the object which provides a stabilization of the axis shaft vertical position under the maximal
admissible initial departures in the phase coordinates for given control restrictions or under the
minimal admissible control restrictions for given angular initial departures of the shaft. In this case

the quality control performance will be some optimal structure of the phase space for the closed

loop system.

LINEAR ANALYSIS OF UNCONTROLLED OBJECT

Synthesis of a control law from the MRA-criterion is carried out based on the eigen-motions
for an uncontrolled object. These motions are given by the eigenvalues of matrix A c, or by the

roots of a characteristic equation for an uncontrolled object (3), (4)

X,(3.) --= Az - ilia - l = 0
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The solution of this quadratic equation has the following analytical expression

At,.- = l (itl + V_ - 11-') (6)

The dependence of the roots (6) from the parameter H is illustrated by the upper half complex
plane in Fig. 3. The dependence of the complex conjugate roots to (6) and noted by sign (*) is
shown in the bottom half of this plane. The whole Fig. 3 shows the dependence of the matrix A
eigenvalues from the parameter H for object (1). The following specific points in this dependence
conforming to the behavior of the roots may be stated. The first point conforms to the shaft
without rotation when H = 0 and

AI=._;=!, A2=A_=-!.

In this case, there are two positive eigenvalues of the matrix A that relate to instability of the
nonrotational shaft due to a negative stiffness of AMB. The second specific point conforms to the
beginning of the shaft gyroscopic stabilization when H - 2 and

A_=A2=i; A_=A;=-i.

In this case, all eigenvalues of the matrix A are imaginary ones and the shaft has conservative

stability. The portions of the dependence k(H) which characterizes the stability of the control

object may also be deduced. The first portion conforms to the range (0,2) of parameter H. This
portion is characteristic of the object instability as far as the roots (6) in this case

i H
Al=r+ _-, Al=r-i H (7)

have the positive real part r > 0. The second portion conforms to the range H > 2. It is

characteristic of the object's conservative stability. In this case, all eigenvalues of the matrix A
are imaginary ones

AI = i_p, A_ = --i_p, A_ = i_N, A_ = --iwN, (8)

where oh, and t.os denote the precessional and nutational frequencies of the high rotational speed

shaft. For H > 1 these frequencies are approximately equal to oh, = 1/H, con = H. By this

means, the studied problem deals with the object with stability without control dependencies from
one parameter H. Parameter H characterizes the shaft rotational speed which may be changed
from zero to some final value H,,. It is proposed that the point H = 2 lies within the range of the
admissible values of this parameter. In this case, the changing range of parameter H is divided in

two parts on indication of the object stability. The object is unstable when 0 < H < 2, and it has

conservative stability when H > 2.

SYNTHESIZING A NONLINEAR ROBUST CONTROL OF THE UNSTABLE SHAFT

The optimum structure of the closed loop system phase space is the nonlinear robust control
performance providing the fulfillment of the MRA-criterion. Synthesis of a nonlinear robust
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control for an unstable shaft is carried out using the approach suggested in [2]. With respect to this
approach the equations (3) are transformed to canonical form

where A is the Jordan form of the matrix
of a linear transformation of variables

A c. This transformation may be carded out by means

l/A1 ! )y= Dx, D= 1/,\_ 1

Next is separated the unstable part of the object conforming to the matrix A= eigenvalue having the

positive real part

dY_._!_
dt - Air1 - v (9)

where yt = _ + z_ is the unstable variable of the object. Nonlinear robust control v is

synthesized in a class of the simplest piece-wise linear functions (5) satisfying the following

conditions [2]:

a) dependence of control upon unstable variable only; b) asymptotic stability of the system's
unstable part under this control. If the control dependence from the feedback signal in a linear area
control function is

V ---- _Cr, a ---- AlYl, _ > 1 (10)

then these conditions are satisfied. The transition from variables y to variable x in this
dependence by the use of (2), (7) defines the feedback matrix in (5)

1 r(H) 0 -I"1 )cl(n)= 0 '-'
2

(11)

for nonlinear robust control of the unstable shaft when 0 < H < 2. The results of the changing

roots within the parameter range 0 < H < 2 is shown in Fig. 3 by dashline for different values of

parameter 13.

-SYNTHESIZING A NONLINEAR ROBUST CONTROL UNDER SHAFT GYROSCOPIC
STABILIZATION

In case of sufficiently great angular momentum of the shaft (H > 2), i.e. when the gyroscopic

stability condition is fulfilled, the control's main goal is provision of the asymptotical attenuation

for undamping precessional and nutational modes of the appropriate frequencies oh,, o)N. The best

control performance may be achieved also by the use of MRA-criterion under the synthesis
problem solution. Only in contrast to the unstable object having the bounded region of
controllability in this case the maximal region of attraction is coincident with the whole phase
space. In this case a robust indication of synthesis of control with respect to an uncertainty of its
nonlinear characteristic will be the absolute stability [8] of a closed loop system. For synthesis of
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control providing the system absolute stability in some class of nonlinear functions it is
comfortable to use the object mathematical model (4) and to carry out the variable substitution to a
rotational coordinate system

zt = wcxp(Lct) (12)

where to is a new complex variable which change in time takes place with some cycle frequency

to. In new variables, equation (4) has a view of an undamped oscillator also

t.(2w dw

dt---Y + i(2o:- H)--_ + k(w)w = ve.cp(--i,_'t) (13)

At the same time its natural frequency

k(w) = tt,.,- 0..̀ 2 - 1 > 0 (14)

in the contract to (4) may be positive explicitly. Really, inequality (14) is fulfilled under the

gyroscopic stabilization condition if the cycle frequency in (12) is chosen within the range [o)p, toNI

determined by the cycle frequencies of the shaft precession and nutation. It is illustrated by

dependence k (¢o) shown in Fig. 4 under condition H > 2. The values of the natural frequencies

oh,, o._ are given by the intersecting points of the curve k (o)) with the abscissa axis. The choice

of the cycle frequency value in the variable substitution (12) is realized in the maximum point of
-_--- k H H 2this dependence w = aJm n2 when "(_-) = --, - 1 . For achievement of the system (13)

absolute stability, i.e. for obtaining transient asymptotical stability and of the equilibrium state

uniqueness (placed in the origin), control action is chosen as a monotone function from only a

variable velocity
do;,

i, t) = -j? ). ( 15)

For the simplest piece-wise linear functions (5), i.e. the linear functions with restrictions on the
level u ÷, it is not difficult to show that the absolute stability condition for the closed loop system

(13), (15) is fulfilled. The coefficient 13 value must be sufficiently great with the aim of transient

velocity increasing and of its aperiodicity. Therefore the choice of this coefficient value is
accomplished from an aperiodicity transient condition

i \/-_/-{, ,,_fl > T_ ,--_-) ) (16)

in the closed loop system for any values of parameter H from the range
the control as seen in (5) the inverse variable substitution

dtL' dz t

= (-7_ -- iwz,)exp(-iozt)

and transition from complex variable Zl to variables x is fulfilled.
matrix

6"2([1)= ( O. ol 0'40)i
\--T

2 < H <_ Hm. To obtain

As a result the feedback

([7)

for the absolute stability system of the high rotational speed shaft control is determined.
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PHASE SPACE STRUCTURE OF SYNTHESIZED SYSTEM

The phase space structure of the synthesized system is optional from the MRA-criteria for
nonlinear robust control. The view of these maximal regions of attraction for synthesized systems
depends on the parameter H value. The phase space structure is considered for three specific

values of this parameter: H = 0; 0 < H < 2; H _> 2. The first two cases conform to the unstable

object. In these cases the phase plane of the systems unstable parts gives an indication of the
whole four-dimensional phase space structure of the closed loop system [2]. In the case of

nonrotational shaft (when H = 0 and there are two coinciding positive roots _,1 > 0) the structure

of the unstable variables yl ÷, y2÷ is shown in Fig. 5a. In the case of a slowly rotating shaft (when

0 < H < 2 and there are two complex conjugate roots _,_, _,1" with positive real parts) the structure

of phase plane for the real and imaginary parts of the unstable variable y_ is shown in Fig. 5b.
The bounded maximal region of attraction for stabilizing equilibrium is the specific feature of the
phase space structure in these cases. The third case of the high rotational speed shaft conforms to
its conservative stability. In this case the closed loop system under the proposed control embodies
absolute stability. The phase space structure of that system is topologically equivalent to the
structure of the four dimensional stable linear system.

CONCLUSION

The analytical expression of the nonlinear robust control law adapted to shaft rotational speed is
obtained. This expression coincides with one obtained earlier for the nonrotational shaft and
shows the differences arising from accounting for gyroscopic effects. These specifications consist
of the appearance of the cross feedbacks in the control for each angle and radical distinctions of the
control law from and relating to the gyroscopic stabilization. The control law is suddenly changed
in the point H = 2 that takes into account sudden changing of the object stability property.
Obtaining this solution became possible due to use of the unified MRA-criterion and made it
possible to obtain the nonlinear robust control. The obtained control robustness resides in the
maximal region of attraction under the nonlinear control function uncertainty given by the Hurwitz

angle. By this means the robust approach widely used in the stability theory of linear systems at
present has been successfully developed for nonlinear systems. For the objects having a
conservative stability the nonlinear robust control is the development of absolute stability theory.
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