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ABSTRACT

In this paper we propose a controller design methodology using the discrete-time Q-parameterization control
for variable speed magnetic bearings in order to achieve elimination of unbalance vibrations. Rotor unbalance

usually generates sinusoidal disturbance forces, with frequency equal to the rotational speed. So in order to

achieve asymptotic rejection of these disturbance forces, the Q-parameterization controller free parameter Q is

chosen such that the controller has poles on the unit circle at z = exp jpkT" for the different speeds of rotation Pk
( T s is the sampling period). First, we give a mathematical model for the magnetic bearing in state space form.

Second, we explain the proposed discrete-time Q-parameterization controller design methodology. The controller

free parameter Q is assumed to be a proper stable transfer function whose order equals twice the number of

operating speeds. Third, we show that the controller free parameter which satisfies the design objectives

can be obtained by simply solving a set of linear equations rather than solving a complicated optimization

problem. We also show that the controller order equals: Number of degrees of freedom x (order of Q +3).

Finally, several simulation and experimental results were obtained to evaluate the proposed controller. The

results obtained showed the effectiveness of the proposed controller in eliminating the unbalance vibrations at
the different speeds of rotatiom

Keywords: Q-parameterization, Magnetic bearings, Vibrations, Rotor unbalance.

INTRODUCTION

Unbalance in the rotor of rotating machines causes vibrations due to the sinusoidal disturbance forces

generated by the unbalance. This problem can be solved using active controlled magnetic bearing systems.

There are several papers in the literature which deal with this problem [1]-[7] using either feedback control or
Notch filters to eliminate these vibrations.

The Q-parameterization theory [8]-[9] provides a good tool for the controller design of magnetic bearing

systems in order to achieve elimination of rotor vibrations [5]. This is because the controller free Q-parameter
can be chosen such that asymptotic rejection of sinusoidal disturbances is achieved. The order of the Q-

parameterization controller equals the order of the plant plus the order of the free parameter Q while in the

other methods, the order of the controller equals the order of the plant plus the order of the weighting functions.
Usually the Q-parameterization controller has lower order.

In this paper we extend the controller design methodology developed in [5] to achieve unbalance com-

pensation for variable speed magnetic bearing systems, moreover we design the controller in the discrete-time

domain. Since the frequency of the unbalance sinusoidal disturbance forces equals the rotational speed, we can

327



achieveasymptoticrejectionof thesevariablefrequencydisturbancesbydesigningacontrollerwhichhaspoles
ontheunit circleat z = exp jp_T° for the different speeds of rotation Pk, k - 1,2, ...r where r is the number

of operating speeds and 7", is the sampling period. This can be done by a suitable choice of the controller
free parameter Q . The controller free parameter Q is assumed to be a proper stable transfer function whose

order equals twice the number of operating speeds. With this assumption the controller order is shown to

equal: Number of degrees of freedom x (order 'of Q +3). We also show in this paper that the controller free

parameter Q which satisfy our design objectives can be obtained by simply solving a set of linear equations

rather than solving a complicated optimization problem as for example in the Hoo synthesis control. A 36

state controller is obtained for the magnetic bearing operating at three different speeds. Several simulation and

experimental results were obtained. The results showed that vibrations are eliminated at the different operating

speeds using the proposed controller.

MATHEMATICAL MODEL FOR THE MAGNETIC BEARING

A- Equations of Motion

Consider the magnetic bearing system shown in Fig. 1.

Ys

tff _ tff

"_\.---_ .--_ %',._ ..,_,

.____ -. • .... / __.__ i....
f½ f_,_ f_

Fig. 1 Schematic diagram of the magnetic bearing system.

Table 1: Parameters of the Magnetic Bearing [9]

P axamet er

of the Rotor

iMoment of Inertia about X

Moment of Inertia about Y

Distance between Mass Center

and Electromagnet

Steady Attractive Force

Symbol

m

Jz

Jy

I

FIl,rl

r;2_4,r2_4

Value

1.39 x

1.348 x 10 -2

2.326 x 10 -1

1.30 × 10 -1

9.09 x 10

2.20 x 10

Disturbance Forces

Steady Current

Steady Gap

Resistance

Inductance

Rotational speed

14_, lJ*,/d., fd. ?
IIl,rl 6.3 X I0 -I

I12_4,r2_ 4 3.1 X 10 -1

Goj 5.5 x 10 -4

R 1.07 x i0

L 2.85 x i0 -I

p 27r30, 2x20, 27r10

Unit

kg
2

kg • m
v

2
kg • m

m

N

N

N

A

A

m

H

rad/sec

Assuming that the rotor is a rigid floating body, the fundamental equations of motion of the rotor for the four

radial degrees of freedom [5] are
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if

_, az, 1 f _
= --+'m(m 12--fll+fr2 frl+mg+fdz)

pjJ= . I 1 1"" ¢ -F"_(ftl --ft_+ -_fdo-Ffr2 --frl + _fdo)

= PJ" t_+ I I 1
4 "_y(fl3 -- fl4 "_- 2fdq: "_ fr4 -- fr3 -_" 2fd_b) (1)

The axialmotion (X motion) isindependent of the radialmotion ( Y, Z, O, _ ), can be controlledsepa-

ratelyand it is not considered in this paper. All the parameters in Eq. (1) are defined in Table 1.

B- Electromagnetic Equations

1- Force Equation

The electromagnetic force fj

current ij and the gap length gj as follows:

produced by the j th electromagnet can be expressed in terms of the coil

where k is a constant

fj = k(_) 2, j = il,12,13,14, rl,r2, r3, r4 (2)

2-Coil Voltage Equation

The voltage ej across the j th electromagnet coil, can also be expressed in terms of ij, electromagnet
coil inductance L, and electromagnet coil resistance R as follows:

dis
ej = L--d-{ + Rij, j -- ll, 12,13,14, rl, r2, r3, r4 (3)

C- Linearization

Let Foj , Ioj , Go1 , and Eoj be the nominal values of the force, coil current, gap length and electromagnet

voltage of the jth electromagnet respectively, and let fj, "' _zj, g), ej be the deviation of these quantities from

their nominal values. Then we can write fj = Foj + ]j , ij = Ioj + i_ , gj = Got + g_ , ej = Eoj + e_ , where

fj = c/; + d:;,
di; .,

= (4)

and cj,,dj are the linearization constants which are given by

_LT

= '
• 9

-2kC 
(5)
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The gap deviations vector g can be expressed in terms of Ys, z,, O, ¢, 1 as follows:

/g;i\ /g;2\ / ¢zo-t0) \
l¢ll=-IgG+l [ (+.++0)l

g= Igl+l lg,41 = I(-y,-+¢)/
\g'3] \g'4/ \(-y, +re)/

Note that for the horizontal shaft magnetic bearing system

Cl I --" Crl _ Cl 2 -- Or2 _ C13 = C14 = Cr3 -- Cr4

dn = d,. z, dr2 = dr2, d+3 = dl4 = dr3 = dr4

(6)

Assume that the coil voltages are controlled such that

I I ! I I I I I
ell = --el2 _ eri = --er2 _ el3 = --el4 _ er3 = --er4

then we have
*I .I oi .I

Zll = --112 _ lri = --lr2 ,

.[[i-.[[2

¢i- f:2 "-

/;_-f;, =

Also from Equation (6), we have

•_ .I .I .It 3 = --|14, lr3 = --lr4

(Cll + Cl2)illl + (dl i + dt2)g_l

(c,z + cr2)(rl + (drz + dr2)glrz

2ct3i't3 + 2dt3g_3

2cr3ilr3 + 2dr3glr3

(gl3 + g',3) = -2y,

(glz + g',l) = 2z,

(gl, '- gr_) = -210

(gl3 - g'_z) -'- -21¢

b

! i
ey : el3 + er3 ,

then from Equation (4) we have

ey

e z

e 0

e_0

Substituting Equations (9)-(10) in Equation (1), we then have

i 2 If= m (°_ - 4dt3)Y, + ca3(i_3 + i'_3) + m au

1
= m(al _ 2(d n + dt2))z , - -_(Cll + Cl2)(i'tl -F It2)'' + lfdz

)'_= - ¢ + (dti + dr2)(-210) + (ctz + ct2)(ill - i'rz) + _-_fd,

( )'
t i e_ = el3 tLet e= = e_z + e,1, e o = e_l -- eri , -- er3 ,

iI ., .,= Ld( t3 + z,3) + R(_+3+ i'_3)
dt

L d(i "'= ;1 "_ trl) "l- R(i' n + i; t)
dt

L d " "'__ i'll - '.1) + R(i, n _ z_1.,)
dt

L d, itzt'_ _ i_3) + R(i; 3 _ i',-3)
dt

(7)

(8)

(9)

(10)

(11)

(12)
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D- State Space Representation

Let

Xy =

x_
Xg-- xz

x o

Then from Equations (11) and (12) we have

_g --

y --

Z r -"-

(y.)(z.) (,0)_), ,xz= _, ,xo= /0 ,x_= 1¢ ,
iy i z io i,

u= = y= fd = Zr=

U_. e 2 _ z s / _ _ Zs
u o e o lO lO

Ag(p)Xg + Bg(u + v) + Egf d

Cgxg + n

Cgxg, (13)

where z r is the variable that needs to be regulated, v represents actuator noise, n represents sensor noise
and

A:°  :Ooo°)Ag(p)= 0 o , Bg= b_ 0 '

ao_ A_ A o _00 Ob o

( o) (ooo)cy 0 0 0 egy e 0 0

0 c¢ 0 E = _ edzCg = 0 0 c_ ' 0 0 '

0 0 0 c o 0 0 0 %0

(OlO (0 1 o)Au = (a-4a_) 0 Az = (,_-2(a,t+a,2)) 0 -(c.+.,.)
'_ -"hi' _ -R" '0 0 T 0 T

(o (OlO o o -R 7h /
T 0 0 "Z-/

( 00)= _ 0 , A_oo = _ ,
A°¢ J(] 0

by=b_=b o =b¢ = , cy=c z =c o=c¢ =(1 0 0),

The subscripts y, z, 0 and ¢ denote the Y, Z, $ and _ motions respectively. Note that if the

rotational speed p = 0 the system can be divided into four separate SISO systems. However if p _ 0 the
system can be divided into three separate subsystems, two SISO systems and one, two-input two-output system.
In both cases the electromagnets coil voltage are given as follows

e'n = -e;2 = (u_+ uo)/2 ,
e',l = -e'r2 = (u, - uo)12,

eh = -_h = (% + u,,)12,

e'_ = -_'_ = (u_ - u,_)12 (14)
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In this paper we design the controller for p = 0 .

DISCRETE-TIME Q-PARAMETERIZATION CONTROL

The discretization of each subsystem defined by Eq. (14) using a zero order hold at a sampling time of

T s sec [15] yields the following SISO discrete-time control system:

x(k + 1) - AdX(k ) + bdU(k ) + bdV(k ) + edfd(k)

v(k) = Cd(k)+n(k)
zr(k) = CdX(k) (15)

A- The Q-parameterization theory

The Q-parameterization theory [11]-[12] states that the set of all stabilizing controllers of a given plant

G(z) can characterized by one free parameter (one-parameter-control feedback) or two free parameters (two-

parameter-control feedback) namely Q1 and Q2 •

v
--_+ ..-.e,[_7"-] u+_.+ eel I--.--1 +_+ _1C(zl-A ]1 _,

O,_z

Fig. 2 One-Parameter-Control Feedback System.

Consider the one-parameter-control feedback system shown in Fig. 2, for controlling any of the SISO

subsystems described by Eq. (13), where zr_I E IR is the reference (command) input signal, v E IR is the
actuator noise, n E IR is the sensor noise, fd E ]R is the disturbance force, d E IR is the output disturbance,
u E _ is the controller output, z E IR is the plant output to be regulated, and K ER is the stabilizing

controller for G(s) . Note that v,n, and fa may also represent model uncertainties. In order to characterize

the set of all stabilizingcontrollers K for G(z), first we need to construct a doubly coprime factorization (see

[11] for details) N,D,N,D,X,Y, fi,Y eRHoo for G(z). First we choose real matrices Ix and f2 such that

the matrices A o := A d - bdf x and 2{o := Ad -- f2cd are stable (allthe eigenvalues of A o and A o lie inside

the unit circle), then the doubly coprime factorization Y(z), D(z), g(z), D(z), X(z), Y(z), X(z), Y(z) E RHoo

for G(z) is given as follows

N(z) = Cd(ZI -- Ao)-Xbk

D(z) = I - fl(zI - Ao)-Xbd

fi[(Z) = Cd(Z[ -- Ao)-lbd

D(z) = I - Cd(SI -- .4o)-xf2

X(z) = fl(zI--f_o)-lf2

Y(z) = I + yt(zI - fto)-Xbd

fi(z) = fl(zI - Ao)-X f2

9(Z) = [ 2f- Cd(Z I -- Ao)-Xf2

Then the set of all stabilizing controllers for G(z) is given by

K(z) = {(Y(z) - Q(z)N(z))-X(X(z) + Q(z)b(z)),Q(z) • RHoo,

(16)

IY(z) - Q(z)fil(z)l # 0}. (17)
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B- Controller Objectives

The following controller objectives are imposed

1. We need to achieve robust stability against speed and other parameter variation; and achieve fast and
well damped transient response

2. We need to achieve rejection of low frequency disturbances

3. We need to achieve asymptotic rejection of the class of sinusoidal disturbance with frequency equal to the
rotational speed p, in order to compensate for the unbalance.

C- Controller Synthesis

1. In order to satisfy requirement No. 1, the closed loop poles must be located at a prescribed region in the

open left half plane. This can be achieved by choosing N,D,_I',I),X,Y, ff,Y,Q ED, where D, is a
subset of RHoo defined as shown in Fig. 3.

lm Is }

O=c& 113d

Re{s}
t

Fig. 3 Generalized region of stability.

2. In order to satisfy requirement No. 2, the controller must have a pole at z = 1 . This can be achieved by
choosing Q(z) such that the following identity holds

K(z = 1) = c_

From Eq. (17), Q(z) must satisfy the following Equation

Y(z = 1)-Q(z = 1)fiZ(z = 1)= 0

(18)

(19)

3. In order to satisfy requirement No. 3, the controller free parameter Q(z) must be chosen such that the

controller has poles at z = exp +ipT0 . This can be achieved by choosing Q(z) such that the following
id_ntit.v h,-_lA_
........ ¢ ......

K(z = exp ipT') = c_ (20)

Let us assume that the operating speeds of the magnetic bearing are Pz,P_, ...Pr. Then at each operating

speed the frequency of the generated unbalance sinusoidal disturbance forces equals Pk, k = 1,2, ...r. In order
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to achieve asymptotic rejection for the class of sinusoidal disturbance with variable frequencies, the following

condition is imposed on Q(z)

K(z=exp jpkT')=o¢, k=l,2,. .... r (21)

From Equation (17) we have

Y(z = exp jpkT°) - Q(z = exp jphT°)/V(z = exp jpkT') = 0, k = 1,2,. .... r (22)

Equations (22) are in fact 2r equations, r equations for the real part and r equations for the imaginary

part. Equations (19) and (22) indicate that we have 2r + 1 equations in Q(z) , this suggests that Q(z) can
take the form

al a2 an (23)
Q(z) : % + (z - _'1)+ (z - _2)+ ....... + (z - _.)

where no,at,. ...... an 6 ]It are free design parameters and zl,z2,. ....... zn > a 8 6 _i. are fixed. Note that Q is

a proper stable transfer function whose order equals twice the number of operating speeds.

Theoretically we should be able to design a controller which achieves asymptotic rejection for the class
of sinusoidal disturbance of variable frequencies. However in this case as the cttkt of Q gets higher, so does

the controller. In this case the practical implementation of the controller becomes difficult. Model reduction

techniques [14] must be used to reduce the order of the controller. In this paper we design a controller for

magnetic bearingsmtatingat three different speeds Pl, P2, and Pa, so Q(z) is chosen as follows:

al a2 a3 a4 a5 a6 (24)
Q(z) = % + (_ _Zl------_+(: _ =2--------_+(z -z3-------_+ (z - z,) + (z- Zs) + (_ - zs)

Then we have

al a2 a3 a4 as a6 (25)
Q(z----1)----.ao+ (i-z,"_ + (I -z2"_---'-)+ (1-z3"--_ + (1-z4"_"-) + (I - zs) + (I-zs)

a I a 2 a 3 a 4 as a s

Q(zp_)=aO+(zpk_Zl)+(zpk_z2)+(zpk_za)+(zpk_z4), _ (zpk_Zs)+(zpk_zs), k=1,2,3 (26)

where zpk = exp -/pkr' Eqs. (25) and (26) are in fact seven linear equations in the seven unknown free design

parameters %, al, %, a3, a4, as, a s . In order to solve Eqs. (25)and (26)for a0, a 1, a2, a3, a4, a s, as

we need first to solve Eqs. (19) and (22) for Q(z = 1) and Q(z = expJpkr'), k = 1,2,3. Eqs. (19) and (22)

are also linear equations in Q(z = 1) and Q(z = expJp'T'), k = 1,2,3 From Eqs. (19) and (22) we have

Q(z= 1) =
Q(z=exeP, r.) =

Y(z: 1)g-l(z = 1),

Y(z:expJphT°)._--I(z:extYiPkT'), k = 1,2,3 (27)

Then the design parameters a0, al, %, an, an, as, a s can easily be found by solving the following set of linear

equations: Let zppj:j = 1/(zpk - zj), k = 1,2,3, j = 1,2, ...6. Then we have

/a°/al/il/ l-zl'lj'l-z2'0l/lz3lJlz4l/Xz5l/lz6/1,Qzl}
1 _(zppll ) _(zppl2 ) _(zpp13 ) _(zppl4 ) _(zppi5 ) _(zppi6 ) ( _(Q(z ----zpl))

a2 9(zppll ) 9(zppl2 ) .'_(zppl3 ) 9(zppl4 ) 9(zppls ) 9(zppls ) 9(Q(z = zpl))

a3 = _(zPP21) _(zPP22) _(zPP23) _(zPP24) _(zPP2s) _(zPP26) I _(Q(z zp2))

a, !_(zPP21) _(zPP22) _(zPP23) _(zPP24) _(zPP2s) _(zPP26) I _(Q,(z zp2))

as _(:PP31) _(zPP32) _(zPP33) _.(zPP34) _(zPPa5) _(zPP36) _(0( z zP3))
a s \0 _(~PP31) _(zPP32) _(zPP33) _(zPP34) _(zPP35) _(zPP36) \_(Q(z Zp3))

(28)
where _(*) and _(*) denotes the real and imaginary parts of ( * ).
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RESULTS AND SIMULATION

The method of controller design discussed in section IV is applied to a magnetic bearing system whose

parameters are given in Table 1. The /_ synthesis Toolbox [16] with Simulink were used for the design and
simulation. The system is discretized using a zero order hold at a sampling time T a = 158psec. The controller

K(s) is designed at a speed p = 0 rad/sec and must be able to keep the system stable for a speed range
(0 - 2r250) rad/sec. The operating speeds are assumed to be Pl --- 27r30 rad/sec, P2 = 2_r20 rad/sec, and

P3 ---- 27r10 rad/sec. The generalized region of stability D s is defined by the following parameters: a, -- 0.995,
/_d = 0.707 to insure a certain degree of stability against parameter variation and to get fast and well damped

transient response, z 1 -- 0.99, z 2 = 0.981, z3 = 0.984, z4 = 0.981, z s = 0.978, z6 = 0.975. The following

results are obtained: The controller free parameters %, a,_,a2, a3, a4, as, a6 which satisfies Eqs. (19) and (22),
for each subsystem of Eq. (13) were found to be

Y-motion: a 0

- motion : a o

Z-motion: a 0

O-motion: a 0

= 7.7 x l0 T, a1 = 1.44 × l0 T, a s = -1.589 × 10Sa3 = 6.649 × l0 s, a4 = -1.325 x 109,

a5 : 1.262 x 109 , a6 : -4.618 × l0 s

= 7.63 x l0 T, a I = 1.427 × 107, a s = -1.574 × 10Sa3 : 6.583 x 108, a4 = -1.312 x 109 ,

a5 = 1.250 x 109, a6 : -4.573 × 108

: -5.258 x 10 T, a 1 : -9.55 × 106 , a s = 1.053 × 108% = -4.406 × l0 s , a 4 = 8.782 x 10g,

a5 = -8.369 × l0 s , a6 = 3.061 × l0 s

= 5.209 x 10v, a 1 = 9.461 × 106, % : -1.043 × 10Sa3 : 4.363 × 108 , a4 : -8.696 x 108 ,

a5 : 8.288 × l0 s , a6 = -3.031 × l0 s (29)

Substituting the Q's in Eq. (17) we get (after model reduction) a 9 state controller for each of the four

subsystems. The overall controller of the whole system has 36 states and is formulated as follows:

Kr(z) 0 0 0 )
0 K,_(z) 0 0 (30)

K(z) = 0 0 Kz(z ) 0

0 0 0 Ko(z )

where Ky(z), K¢(z), Kz(z), Ks(z ) are the controllers of the Y, @, Z, O subsystems respectively.

Table 2: Controller order Vs. Number of operating speeds

Number of operating apeeds Degree of controller

r:l I 20

r=2 28

r:3 36

r:4 44

r=S 52

r=6 60

r = N No.of degrees of freedom x (2N + 3)

An interesting observation from the controller design procedure explained in the previous section is shown

in Table 2. Table 2 shows a relationship between the number of operating speeds and the degree of the controller.

We can conclude from this table that the degree of the controller equals: number of degrees of freedom x (2N +3)

where N is the number of operating speeds or equals: number of degrees of freedom x (order of Q +3).

A plot of the singular values of the loop gain GK is shown in Fig. 4. High loop gain at low frequency

and low gain at high frequency are achieved. A plot of the singular values of sensitivity is shown in Fig. 5. From

Fig. 5 we can see that the sensitivity is small at low frequencies which means good disturbance rejection for the
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class of step disturbances and approaches zero at the frequencies w 1 = 27r30 rad/sec, w 2 = 27r20 rad/sec and
w 3 = 27r10 rad/sec which means asymptotic rejection of the unbalance sinusoidal disturbance forces at these

speeds.

In this design, we ignored the interference terms, which express the gyroscopic effect, as p = 0 . We

therefore verify the robust stability of the system against the changes in the rotor speed. Let the perturbed

plant p # 0 be denoted by Gp and the additive perturbation Ap from G is as follows:

Ap = Gp - G (31)

The robust stabilityisguaranteed ifthe followinginequalityholds:

I

_(Av) < _(K(I + GK)-') (32)

Fig. 6 shows the singular values plot of 1/'_(K(I + GK) -1 and _(Ap) at p = 2=250 rad/sec. From Fig.
6 we can see that the system is stable up to a speed p = 27r250 rad/sec. Fig. 7, Fig. 8, Fig 9 show the

gap deviations due to unbalance and electromagnet forces acting on the rotor. In Fig. 7, 8, and 9 we can see the good

suppression of the imbalance forces at the variable three design speeds.

,V

,0'

I0'

Ji
104[ '¢Vtm: Z- Tt4ETA (-_, Ho,_ni_'- FJ_ (--)

le" lo-' to* io' io' lo' Io'

From (rad_

Fig. 4 Singular values of the loop
gain GK.

10' [ VwtEZ-TI.IETA(-).HertW_:Y-F.PSI{--}

i

"l
i

iii I
,o_'}_ ,o-' lo' lo' IV ,_ ,o'

r.,_ue_ (raawc)

Fig. 5 Singular values ofthe sen-

sitivity.
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,04

]'°
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,o7

tO-MI
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i

_J

,¢ ,o' ,¢ ,o' 4"

II-_(K(I + GK) -_) (-)

and _(Ap) (- -) p = 2_r250.

Q

,.'-G

G z x

, ',, 011- _--

I

I . I

li z _.

r I s

q r
i

,/

i

I I
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T'me(_)

5O

t _-_- (1_.-_) --

Z,o_ ..... ,, ,, ,, , ', ,' , ,, ,
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-: * i t I I I i

I I i I I I I i I i

v Ir i I il I I i i Ii i i i I il!Tt;t;77t;ti777t;;
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Fig. 7 Airgap variations due to unbalance and magnetic forces acting on the bearing for p = 2_r30 .
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Fig. 8 Airgap variations due to unbalance and magnetic forces acting on the bearing for p = 2_r20 .
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Fig. 9 Airgap variations due to unbalance and magnetic forces acting on the bearing for p = 27r10 .

CONCLUSIONS

In this paper we employed the discrete-time Q-parameterization control to design a controller which

achieves elimination of unbalance vibrations in variable speed magnetic bearings. The free controller parameter

is chosen such that the controller has poles on the unit circle at z = exp jp_'T, for the different speeds of rotation

p_ , and satisfies other control objectives. This insures asymptotic rejection of the unbalance disturbance forces

generated by the unbalance. The controller free parameter Q is assumed to be a proper stable transfer function

whose order equals twice the number of operating speeds. We showed that the free controller parameter is

obtained by solving a set of linear equations rather than solving a complicated optimization problem. We also

showed that the controller order equals: Number of degrees of freedom × (order of Q +3). The controller is

designed at speed p = 0 and the good simulation results that were obtained at speeds p = 2rr30 rad/sec,

p = O,._O 0 ,,.,,-I / ..... A ")_1(I ,._A/ .... I_ ..... ,4 th_ Pnhllctn_¢ nf the nrnnr_ri rnnf.rnllPr

Elimination of unbalance vibrations in a variable speed magnetic bearing can also be achieved by making

the rotor rotate around its axis of inertia at the different operating speeds (automatic balancing). In this case
the rotor will be free from vibrations. This can be done using the same procedures explained in section [II and
[5].
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