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SUMMARY

This paper deals with modeling, structured uncertainties, Ix-analysis and synthesis of a

magnetic suspension system. First we derive a nominal model of the plant and consider its

structured uncertainties, e.g., linearization error, parametric uncertainties, and neglected dynamics.

Then we set the interconnection structure which includes the above structurally represented

uncertainties. Next we design a robust IX controller which achieves robust performance

conditions using the structured singular value It. Finally we evaluate the proposed interconnection

structure and verify robustness and performance of the designed tx controller by experiments.

INTRODUCTION

Magnetic suspension systems can suspend objects without any contact. Increasing use of this

technology is now made for various industrial purposes, and it has already been applied to

magnetically levitated vehicles, magnetic bearings, etc. [ 1,2]. Recent overviews and advances in

this field are shown in [3]. Since magnetic suspension systems are essentially unstable, a feedback

control is indispensable. The problem is that model uncertainties and perturbations often make the

systems unstable.

In the robust control of magnetic suspension technology field, these uncertainties have been

treated as exogenous disturbances, and unstructured uncertainties [4], however, both uncertainty

descriptions caused the conservative analytic results for robust stability/performance tests. In [5],

parameter perturbations were considered, and the model uncertainties were described structurally,

but the unmodeled dynamics written as unstructured uncertainties is not fully discussed.
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magnetic suspension system, which contains less conservativeness for robust stability/performance

analysis. This is concerned with how to construct a set of plant models. We consider the

parametric uncertainties and unmodeled dynamics and linearization error. These uncertainties are

structurally described by real/complex numbers/matrices, and for robustness analysis, we employ
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the mixed structured singular value (mixed p) test [6] to reduce conservativeness. Finally we 

evaluate the proposed model and the robustness and performance of a designed p controller by 
several experimental results. 

MAGNETIC SUSPENSION SYSTEM 

In this section, we derive an ideal model of the system based on physical laws and several 
assumptions. 

Construction 

Consider the electromagnetic suspension system shown schematically in Fig. 1. An 
eieciromagnei is located ai the top of the experhnen*d Sysk~ns. 

The control problem is to levitate the iron ball stably utilizing the electromagnetic force, where a 
mass M of the iron ball is 1.04kg, and steady state gap X is 5mm. Note that this simple 
electromagnetic suspension system is unstable, thus feedback control is dispensable. As a gap 
sensor, a standard induction probe of eddy current type is placed below the ball. 

E + e  t 
L 
R 

Electromagnet 

X +  

Iron ball 

0 Gap sensor 

Figure 1: Magnetic Suspension System (M.S.S.) 

Mathematical Model 

In order to derive a model of the system by physical laws, we introduce following assumptions 
[ I ,  ~ 4 1 .  

[All  Magnetic flux density and magnetic field do not have any hysteresis, and they are not 
saturated. 

[A21 There is no leakage flux in the magnetic circuit. 
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[A3] Magnetic permeability of the electromagnet is infinity.

[A4] Eddy current in the magnetic pole can be neglected.

[A5] Coil inductance is constant around the operating point, and an electromotive force due to

a motion of the iron ball can be neglected.

These assumptions are almost essential to model this system. Under these assumptions, we

derived equations of the motion, the electromagnetic force, and the electric circuit as

d2 x

M-_ = Ma- j, (1)

I+i )2 , (2)f=k X+x+xo

dt + R(I + i) = E + e, (3)

where M is a mass of the iron ball, X is a steady gap between the electromagnet (EM) and the

iron ball, x is a deviation from X, I is a steady current, i is a deviation from I, E is a steady

voltage, e is a deviation from E,f is EM force, k, xo are coefficients off, L is an inductance of

EM, and R is a resistance of EM.

Next we linearize the electromagnetic force (2) around the operating point by the Taylor series

expansion as

- Kxx + Ifii, (4)f = k X_xo

Kx = 2kI2/(X + Xo) 3, Ki = 2kI/(X + Xo) 2.

i , RI = E, theFrom equations (1), (3), (4) and the steady state equations: Mg = k (x--4--ff__o)2

nominal block diagram of the magnetic suspension system is represented in Fig. 2. With the

nominal model parameters in Table 1, a transfer function of the nominal model is given by

-28.9

a,om(_) = (s + 28.81(_ + 78.01(s - 78.0 /" (51

Figure 2: Nominal linear model for M.S.S.
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Table 1: Model Parameters

Parameter Nominal Value Unit

M 1.04 [kg]

X 5.00 X 10 -3 [m]

I 0.789

1.71 x 10 -4

[A]
Nm2/A 2]

Xo -1.80 xlO -3 [m]

Kx 6.27 xlO 3 [N/m]

Ki 25.7 X 10 -4 "N/A]

L 0.859 [HI

R 24.76

STRUCTURED UNCERTAINTIES

Note that the model of the plant in Fig. 2 was introduced based on several assumptions and

approximations. This model cannot always express the exact behavior of the real plant. We

consider model uncertainties between the real physical system and the ideal nominal model, and

make a set of plant models. Generally, it is well known that the following items are serious

uncertainties [7] and we discuss them in the following:

• linearization error

• parametric uncertainty

• unmodeled dynamics

Linearization Error

Them should be model uncertainties caused by linearization of the electromagnetic force around

the operating point. In Fig. 3, the current-force (i-f) curve at X = 5.0ram is plotted in the upper

figure, and gap-force (x - 3') curve at I = 1.15A is in the lower figure, where O denotes measured

experimental data at each point, and the solid lines show the determined current-force curve and

gap-force curve. The dashed straight lines indicate tangents of each curve at the operating points.

These inclinations of tangents are employed as K_ and K_, respectively. The dash-dot straight
lines are sectors of the linearization errors. These data were measured five times at each point.

From Fig. 3, the perturbations between tangents and curves become bigger if the operating points

move from the original points. These errors were caused by linearization. Here we employ sector

bounds to account for linearization error, and describe K_ and K_ as

Ki = Kit + ki¢Si, 6i E [-1,1], (6)

I(_ = I;_o + k,:ax, 6_ C [-1,11 , (7)

where K_o and K_o are nominal values, k_ and k_ are weights of uncertainties.
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Figure 3: Current-Force Curve and Gap-Force Curve

Parametric Uncertainty

We had better consider the perturbation of a mass of the iron ball M against intentional change

of the mass and against unexpected exogenous force disturbances. Hence, with a perturbation we
describe it as

M = Mo + kM_SM, _SME [--1,1], (8)

where, M o is the nominal value, and k M is magnitude of perturbation.

Unmodeled Dynamics

1

In this section, we discuss the dynamics of the electromagnet which can be represented as L,+R-

Inductance L and resistance R of the electromagnet have frequency dependent characteristics.

Also, measurements of these parameters are very sensitive. Nominal values of L, R are

determined as averages of measurements under forcing at 10Hz. Figure 4 shows the experimental
1

data of t.,+R , where the solid line indicates the nominal frequency response and the dashed lines
1

indicate upper and lower bounds. The dynamics of electromagnet, Ls+R , are distributed in a

frequency dependent belt. Furthermore, if the frequency of the input signal changes, this belt

becomes broad. We treat the width of this belt in Fig. 4 as an unstructured uncertainty as below.

1 1

Ls +----_ - Los + Ro + wi(s)Ai(s)' IAi(jw)l <- 1. (9)

where L o and R o are the nominal values of L and R, respectively, and wi(s) = d,, + cJsl m -
-1

Aw) bw is a weight of uncertainty. The magnitude of weight w[s) is determined as one half of a

width of the belt in Fig. 4.
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Figure 4: Frequency responses of Ls+R

Set of Plant Models

We take into account the above three types of uncertainties, and reconstruct the block diagram

of the system in Fig. 2. The obtained set of models which includes the above uncertainties is

shown in Fig. 5.

It-ANALYSIS AND SYNTHESIS

Quantization of Uncertainties

In this section, we quantify uncertainties and make a real set of plant models.

Change of the Operating P0in(

We consider a structurally represented uncertainty caused by a change of the operation point.

In this system, the operating point is characterized by a steady state gap X {X 1 3.8 < X < 6.2}.

Perturbation of K, and K_

Change of the operating point X causes the other perturbations of parameters, Kj and K. In

this case, parameters K_ and K_ perturb as 14.1 < K_ < 37.3, 5.38 x 103 < Kw < 7.16 x 103

(3.8 < X < 6.2). Then we describe K_ and K_ as below.

I(_ = 25.7 -4- 11.6.6i, 6, e [-1,1], (10)

I,,'_ -- 6.27 × 103 +8.90 x l0 s. di_, 6_: E [-1,1]. (11)
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Figure 5: Set of Plant Models with Uncertainties 

. .  a uncerm ribes 

An uncertainty in the electromagnet, & , should be also considered. We set the parametric 
uncertainty of L and R as 0.782 5 L I 0.936 (9% perturbation) and 24.5 5 R 5 25.0 (1% 
perturbation). In addition to the above parametric perturbation, we should take into account 
unmodeled dynamics in the high frequency range. Using an FFI' analyzer, we measured them. 
Finally, we decided a set of electromagnetic dynamics, L~+R , as 1 

1 
0.859s + 24.8 

1.28 x 10-3(s + 3.20)(s + 900) 
(s + 25.8)(s t 31.4) A&), IA;(jw)l 5 1. (12) + - - 1 

LS + R 

From the above discussion ir? t!!ese thxe8 subsections, the find qumtity of cficer!ain!ks a e  selected 
in Table 2, where a 7% perturbation of mass M is considered in this case. 

Table 2: Quantity of uncertainties 

I II I 

1.28x lo-' (s+3.20) (~+900)  
ICM I 7.25 x )I w;(s) I (s+25.8)(s+31.4) 

Design 

Utilizing the structured singular value p [8, 91, we design the controller which achieves 
robust performance against various types of uncertainties. 
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Figure 6: Interconnection Structure 

We construct an interconnection structure by LFT representation in Fig. 6, where Wp", is a 
performance specification and also is a weight for a sensitivity function S : = ( I  + G,,,K)- . W,,, 
is given by a following equation, and its frequency response is shown in Fig. 7. 

100 
1 + s/o.1. I&rf ( s )  = 

Next, for the robust performance synthesis, we define the block structure A . The 

perturbation A (s) belongs to the bounded subset 

The structured singular value pa (M) is defined for matrices M E C n X n  with the block structure 

A as 
1 

min{a (A) : A E A , d e t ( l -  MA) = 0)  
p * ( M )  := (16) 

unless no h E A makes ( I  - M A )  singular, in which case pa (M) : = 0. 
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Figure 7: Weighting Function Wp_,:

We then have:

- The closed loop system will have robust performance, i.e., it will be robustly stable and

sup#A[Ft(P(jw),K(jw))(jw)] < 1.
wER

(17)

We apply standard D - K iteration to find the sub-optimal I.t controller for the system. We

thus iteratively solve the following problem:

"" " " 1sup inf {?r(D(jw_Fl(P(4,.,.,'_ h" ( .... _( .... _ r_- :_, ._
wERD(w) : \ \j ]_*-\j--]]tj_]u t a_x,J))} "_ 1, (18)

After the 3rd iteration, we obtained a controller K(s), where the supremum of _t,, [F_(P,K)] is

0.9766. Final scaling matrix D(s) has 12 states, then K(s) has 30 states. We employ the

Hankel norm approximation technique to calculate the reduced order system of K(s). Final

balanced controller K(s) is as follows, and its bode diagram is shown in Fig. 8. The supremum
of the #A[FI(P,/_')] is also 0.9766.

X

3.27 × 10 m x (s + 486 + 885i)(s + 486 - 885i)

(s + 1740)(s + 949 + 1320i)(s + 949- 1319i)

(s + 389 + 626i)(s + 389 - 626i)(s + 335)(s + 79.1)(s + 29.5)

×

(s + 472+ 794i)(s + 472-- 794i)(s + 391+ 599i)(s + 391- 599i)(s+ 348)
(s + 14.7)(s+ 4.86)(s+ 2.63)(s+ 0.175)(s+ 0.114)

(* + 8.16)(, + 2.66)(s+ 0.210)(, + 0.127)(, + 0.O778) (19)
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10 3

A calculated upper bound and lower bound of/_zx [Ft(P, -_')]with the controller/_'(s) is shown

in Fig. 9., where the two solid lines respectively show upper and lower bounds of IX and the

dashed line shows the maximum singular value of (D(j_)FI(P(j_:), ._'(j_a))(j_)D-l(Jw)) •

A peak value of the upper bound of IX is less than 1, then the closed-loop system with

considered uncertainties achieves the robust performance condition. This result shows

guarantees robust performance against uncertainties caused by a change of operating point

{XI 3.8 <X< 6.2}.

EXPERIMENTAL EVALUATION

In order to evaluate the design process, we implement the obtained controller/_'(s) via a digital

controller, and carry out experiments. The sampling period of the controller is 95IXs, and a well

known Tustin transform was employed for discretization. All experimental results which show a

position of the iron ball are shown in Fig. 10.

Evaluation of Nominal Performance

Step response of the position x of the iron ball at X = 5[mm] ,(nominal steady gap) is shown

in Fig. 10(a), which indicates stable levitation with the controller K(s) at the nominal steady gap

X = 5.0mm. The magnitude of the step-type disturbance is 22 N, which is twice as much as the

steady state force. Since it is difficult to give disturbance forces to the iron bail directly, we add a

pseudo-disturbance by applying a voltage signal to the control input signal. This figure shows that

the nominal performance is fully achieved.
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Figure 10: Experimental Results
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Evaluation of Robust Stability

Time responses of the controllers /_'(s) are shown in Fig. 10(b), which indicate stable

levitation at the steady state gaps X = 1.3, 5.0, 8.7 ram. These lines show that the robust stability

against the perturbation of X (1.3 < X < 8.7) is achieved. If we change the steady state gap X

to less than X = 1.3, or greater than X = 8.7, then the system disappointingly becomes unstable.

Evaluation of Robust Performance

For the verification of the robust performance test, we measured time responses against a step-

type external disturbance (22 N) at the steady state gaps X = 3.8, 6.2mm. Results are shown in

Fig. 10(c).

From this result, it can be seen that the controller/_" (s) shows adequate performance comparing

the response in Fig. 10(a). We have confirmed /_'(s) achieves robust performance against model

perturbances caused by a change of operating point {XI 3.8 < X <_6.2}.
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CONCLUSIONS

In this paper, we proposed a novel set of plant models for a magnetic suspension system

considering structured uncertainties.

We transformed the obtained model to the LFT represented interconnection structure with the

structured mixed uncertainty. Next we designed a robust controller by It-analysis and synthesis

which achieves robust performance criteria using the structured singular value It. Finally we

evaluated the proposed interconnection structure which contained the structured uncertainties, and

also verified robustness and performance of the designed It controller by experiments.
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