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Abstract 

Vibration control of flexible structures has received a great deal of interest in recent years. Several 
authors have investigated this topic in the areas of robot manipulators, space structures and flexible 
rotors. Key issues associated with the dynamics and control of vibration isolation systems are 
addressed in this paper. 

Among other important issues to consider in the control of such systems, the location and 
number of actuators and sensors are essential to effectively control and suppress vibration. In 
this paper, we first address the selection of proper actuator and sensor locations leading to a 
controllable and observable system. The Rayleigh-Ritz modal analysis method is used to develop 
a lumped-parameter model of a flexible vibration isolation table top. This model is then used to 
investigate the system's controllability and observability including the coupling effects introduced 
by the magnetic bearing. This analysis results in necessary and sufficient conditions for proper 
selection of actuator and sensor locations. These locations are also important for both controller 
system's complexity and stability point of views. A favorable pole-zero plot of the open loop 
transfer functions is presented. Necessary and sufficient conditions for reducing the controller 
complexity are derived. The results are illustrated by examples using approximate mode shape 
functions. 
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1 Introduction 

Sensitive instruments and precision machines have made it possible to investigate phenomena 
with dimensions of the nanometer scale. For example, current Michelson-type optical heterodyne 
interferometer can measure displacement with a resolution in the nanometer range [1]. Scanning 
Tunneling Microscopes (STM's) which use flexure linkage structures have Angstrom resolution 
and range of motion on the order of one micron r2]. In these and other applications, vibration 
from ground motion and other distrubances, which may be in the micrometer level, will seriously 
degrade the overall system performance. 

Traditional vibration isolation techniques can be generally divided into two categories: 1) 
passive and 2) active. Passive vibration isolation often involves the use of metal springs, elastomers, 
rubber, air springs or other passive elements to either absorb or dissipate vibration energy [3]. 
Passive techniques offer simple, inexpensive and reliable means to protect mechanical systems from 
environmental vibration. However, it is not possible for the passive vibration isolation methods to 
influence the system dynamics and adapt in real time. On the other hand, active vibration isolation 
techniques which use force generators that are adaptable to excitation and response characteristics 
of the system can actively counteract and cancel the undesirable vibration. In additiion, the active 
system provides significantly superior vibration isolation performance. The control force is often 
realized by pneumatic or electromechanical actuators. For example, Sandercock [4] proposed to 
combine both the active controlled electromechanical actuators and passive elastomers in building 
a dynamic antivibration system and has already become a commercialized product. In this system, 
the electromechanical actuators offer the damping force proportional to the absolute velocity of 
the table top while the elastomers provide the required compliance. This system is said to achieve 
3J.lgs (3 mgal) RMS acceleration isolation performance [5]. 

In addition to the isolation of ground vibration, the suppression of induced vibration of work 
surface ( or the table top plate) is also an important factor in vibration isolation system design. 
Since the table plate is not a perfect rigid body and thus considered flexible, the resonant frequencies 
of the table can be excited by the environmental disturbances such as acoustic noise, payload 
change, or the motion of a positioning system on the table top. In this case, the vibration modes 
of the table top will be excited and the performance of the system may degrade. 

The use of actively controlled magnetic bearings is considered to not only achieve ultra high 
performance vibration isolation from the environment but also to suppress the induced vibration 
of the table top. Because of the unstable nature of the magnetic bearing, robust control scheme 
is needed to guarantee the performance. But prior to the control system design, the sensors and 
magnetic actuators should be properly located so that the vibration can be reduced effectively. 
As far as the flexibility of the top plate is concerned, this is related to the mode shapes of dif
ferent vibration mode. This paper focuses on the actuator and sensor locations from the system 
controllability and observability points of view. 

Controllability and observability of distributed systems has been investigated by Hughes and 
Skelton (6J, and Yang and Mote [7J. In [6J the controllability and observability condition of linear 
matrix-second-order systems are discussed. But since the orthogonality of mode shape functions 
wasn't used, no direct relationship between the node line and the condition of controllability and 
observability is derived. In [7J, although the locations of actuators and sensors were related to 
the modeshape functions, the examples discussed are the axially moving string with clamped ends 
and rotating circular disk with clamp rim and thus the rigid body motion is not considered. Also 
the sensors assumed in their derivation are the position and velocity sensors. 

In this paper, it is of interest to investigate the controllability and observability of rigid body 
motion of a magnetically suspended vibration isolation table top. In the case, the table top 
will be modelled as a rectangular plate with free edges. Due to the importance of the inertial 
acceleration feedback in vibration isolation systems, the accelerometer outputs are also included 
in the derivation of the observability condition. Since the prototype design uses magnetic bearings 
for levitation and vibration control, the unstable nature of the actuators is coupled to the overall 



system dynamics. The controllability and observabiJity analysis presented in this work takes this 
fact into account. In order to apply the results to the system design, normalized frequencies and a 
map depicting the node lines corresponding to table top were approximated using the Rayleigh-Ritz 
method. 

Improper placement of actuators and sensors can lead to complex control system designs even 
though these locations may correspond to a controllable and observable system. For example, a 
conventional flexible arm has zeros in the right half plane if the actuator and sensor are noncollated. 
This nonminimum phase nature adds additional phase lag to the system and results in poor system 
performance [8]. Such issues have motivated us to investigate the relationship between proper 
actuator/sensor locations and favorable open loop system behavior. 

In this paper, the problem formulation is presented in section 2. The selection of proper 
actuator and sensor locations leading to a controllable and observable system is then discussed 
in section 3. A lumped-parameter model of a flexible vibration isolation table top is used to 
investigate the system's controllability and observability including the coupling effects introduced 
by the magnetic bearing. This analysis results in necessary and sufficient conditions for proper 
selection of actuator and sensor locations. Section 4 presents a favorable pole-zero plot of the open 
loop transfer functions. Necessary and sufficient conditions for reducing the controller complexity 
are derived. The results are illustrated by examples using approximate mode shape functions. 
Such information is important for the overall design of ultra high performance vibration isolation 
systems. For example, critical frequency regions in the transmissibility curves can be identified 
and taken into account in the control system design. 

2 Problenl Formulation 

Consider a thin rectangular table top plate with free edges as shown in Figure 1, assuming that 
the plate is made of homogeneous, isotropic material, then the equation of motion is [9], 

phw(x, y, t) + D \74 w(x, y, t) = I(x, y, t) (1) 

where p is the density of the plate, h is the plate thickness, w(x, y, t) is the transverse deflection, 
D is the flexural rigidity of the plate and is equal to 12(i~sV')' E is the Young's modulus, II is 

Poisson's ratio and \74 represents the biharmonic operator. Moreover, since we will first deal 
with the controllability and observability issues in this paper, only the control force is taken into 
account and other forces such as gravity and disturbances are not included. Therefore, in such 
a case I(x, y, t) denotes the control force per unit area of the plate. Because there is no lateral 
constraint, the boundary conditions of the plate are given by [10], 

( i) £,rw(x, y, t) + IIfl,rW(X, y, t) = 0 I < < y O_x_a for y = O,y = b 

( ii) ~w(x, y, t) + (2 - IIhy&;x' w(x, y, t) = 0 IO$x$a for y = O,y = b 

( iii) fl.rw(x, y, t) + II~W(X, y, t) = 0 IO<y<b for x = 0, x = a (2) 

( iv) &' &' pw(x,y,t) + (2 - 1I)&x&y2 w(x,y,t) = 0 IO$y$b for x = O,x = a 

The physical meaning of these four boundary conditions is that the bending moments, twist mo
ments, and shear forces along the four edges are equal to zero. 

In order to develop and implement a finite dimensional controller, a lumped parameter model 
of the system is needed for the distributed system described by Equation (1). Because the equation 
is a partial differential equation, in order to apply the control law, the system should be discretized 
to obtain a lumped-parameter model. To achieve this we consider only n modes in the dynamic 
equations and assume that the influence of the higher modes is negligible. The transverse deflection 
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Figure 1: Thin rectangular plate with free edges 

w(X, y, t) can be represented by means of a series of n mode shape functions <Pi(X, y) of the system 
and expressed in the following form, 

n 

w(x,y,t) = Lai(t)<Pi(X,y) = aT(t)~(x,y) (3) 
i=l 

where ai(t) (i = 1,2, .... , n) are the generalized coordinates. We further assume that the table is 
supported by m discrete point force actuators located at (Xi, yd and i = 1, 2, ... , m. Therefore the 
control force can be expressed as, 

m 

f(x, y, t) = L !i(t)Oi(X, y) = fT (t)d(x, y) (4) 
i=l 

where fi(t) is the control force exerted by the ith actuator and Oi(X, y) is the impulse function 
at (Xi, Yd. Using Equation (3), the kinetic energy T and potential energy V of the plate can be 
written in terms of generalized coordinates and mode shape functions as [9], 

T = !fAPhw2(x,y,t)dA = !fAPh[L:7=lai(t)<Pi(x,y)]2dA 
= ~ fA ph(aT~(x, y))2dA = ~aT(t)Ma(t) (5) 

where the inertia matrix M is given by, 

M = ph i ~(x, y)~T(x, y)dA 

and 

V 



D r [(aT(t)~xx)2 + (aT(t)~yy)2 + 2I1aT(t)~xx~;ya(t) 
2 JA 
+2(1-1I)(aT(t)~Xy)2]dA 

= ~aT (t)Ka(t) 

where the stiffness matrix K is given by , 

K D 1 (~xx~;x + ~yy~;y 
+211~xx~;y + 2(1 - 1I)~xy~;y)dA 

Also the virtual work due to the m point force actuators is: 

8W 

where 

1 f(x,y,t)8w(x,y,t)dA 

1 fT (t)~(x, y)~T (x, y)8a(t)dA 

fT (t) [1 ~(x, y)~T (x, Y)dA] 8a(t) 

fT (t)R8a(t) 

R= 

(6) 

(7) 

and <fJ1 indicates that the ith mode shape is evaluated at location (Xj,Yj), that is ¢i(Xj,Yj). Sub
stituting Equations (5), (6), (7) into the variation indicator of the system and applying Hamilton 
principle, the equations of motion are obtained as, 

Ma(t) + Ka(t) = RTf(t) (8) 

To transform Equation (8) into a state space form, a state vector xT = [aT (t) aT (t)] is introduced 
so that Equation (8) can be written as, 

x = Ax+ Bf (9) 

where the matrices A and B of orders 2n x 2n and 2n x m respectively are given by, 

(10) 

Now that the system equations are formulated, we turn to the system outputs. We consider k 
sensors located at (Xi,Yi)1 (i = 1,2, ... ,8). Assuming that the first p sensors are position sensors, 
(p+ 1 )th to (p+ q)th sensors can measure the velocity of the individual points, and the last 8 - p- q 
sensors are accelerometers. The outputs from the position sensors can be written as: 

n 

Yj(t) = Lai(t)¢i(Xj,Yj) i=1,2, ... ,p (11) 
i=1 

1 Even though we use the same notation (Xi,y;)'S to represent the locations for both actuators and sensors, t.he 
point (Xi,yo) for ith actuator may not be the same as the point (Xi, yo) for ith sensor. 
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The outputs from the velocity sensors are: 

n 

Yj(t) = Lai(t)q,i(Xj,Yj) j=p+1,p+2, ... ,p+q (12) 
i=l 

Finally, the accelerometer outputs are: 

n 

Yj(t) = Lai(t)q,i(Xj,Yj) j = p + q + 1,p + q + 2, ... , s (13) 
i=l 

Note that ai(t) and ai(t) represent the first and second time derivatives of the generalized coordinate 
ai(t). The overall output equations can now be expressed in matrix form using Equation (11), (12) 
and (13), 

y = [~ ~ 1 x(t) + [ ~ la(t) 

= [ : ~ 1 x(t) + [ ~ 1 ret) 
-SM-1K 0 M-1R T 

Cx+Df (14) 

where 

[ ¢l 
q,~ 

¢~ 1 [ ¢i+' q,~+1 ~+1 

1 
q,I q,~ q,~ qJ{+2 ~+2 ~+2 

P
pxn 

= q,:r; 
. , 

Q,x. = </1,'+. 
q,~ ~ ~+q ~+q 

[ W'+' 
~+q+1 ... 

W'" 1 qJ{+q+2 ~+q+2 ... ;.+.+, 
S.xn = . 

. .. 
q,! q,; q,~ 

Equation (9) and (14) can now be analyzed in order to determine the conditions of controllability 
and observability. These isssues are addressed in the following section. 

3 Controllability and Observability 

3.1 Analysis without the Coupling Effect of Actuator Dynamics 

The 2nth order system described by Equations (9) and (14) is controllable if and only if 

rank(C) = rank [B AB ... A2n- 1B] = 2n 

and the system is observable if and only if 

(15) 

(16) 

In order to simplify the problem and deal with diagonal M and K matrices, the orthogonality of 
the eigenfunctions is used [11]. Under this assumption, the n x n inertia and stiffness matrices take 



the form, 

~ 1 = [ ~l · K . · . · . 
Mn 0 in 1 

(17) 

o o 
where M;, K; ~ O. The matrix M- l K is also diagonal with diagonal components corresponding 
to the system eigenvalues, 

o 

(18) 

o 
The eigenvalues Al, A2, ... , An are equal to the square of natural frequencies of the system. 
Because a thin plate with free edges is considered, the first three eigenvalues are equal to zero, 
i.e., Al = A2 = A3 = O. The modes associated with these eigenvalues correspond to the translation 
parallel to the z axis and rigid body rotations along x and y axes. In the following discussion, it is 
assumed that n > 3 so that the vibration modes are taken into account and all other eigenvalues A4, 
As, ... , An are positive. In order to investigate the condition for this system to be controllable and 
observable, the controllability and observability matrices are calculated and discussed as follows. 

In our case , the controllability matrix has the form, 

c=[~ H 0 JH 0 In-lH ] (19) 
0 JH 0 ... In-lH 0 

where 

M-'R
T = [ 

1 <pl 1 <p2 

*~r 1 lr, 1 lr, 1 
1 <pl 1 <p2 1 <pm 

Hnxm 
Jr, 2 l1; 2 Jr, 2 

1 <pl 1 <p2 1 <pm 
Mn n Mn n Mn n 

0 0 0 0 0 0 
0 0 0 0 0 0 
0 0 0 0 0 0 

J nxn = -M-lK = 0 0 0 -A4 0 0 
0 0 0 0 -AS 0 

0 0 0 0 0 -An 

Since there are 2n states ( n position components and n velocity components), the controllability 
matrix should have rank 2n which means that 2n rows must be linearly independent. It is obvious 
that the upper n x 2mn matrix and the lower n x 2mn matrix are almost the same except that 
they are shifted by a series of n x m 0 matrices. Therefore , if n linearly independent rows can 
be obtained from the upper n x mn submatrix, the lower n x mn matrix will also have n linearly 
independent rows and these two sets of n linearly independent rows are linearly independent to 
each other. If we interchange the columns of the upper submatrix and put all the 0 columns to 
the right hand side without changing the rank of the submatrix, we can deduce that the system is 
controllable if and only if the n x mn matrix L has rank n, where 

L = [H JH ... In-lH] (20) 
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Therefore, the system is controllable if and only if rank(L) = n. Due to the diagonal structure of 
J matrix, the conditions for the L matrix to have rank n are [12] : 

1. For Ai with no repeated eigenvalues, the ith row of the H matrix should be a nonzero vector. 

2. For repeated eigenvalues of multiplicity i, Ai+l = Ai+2 = ... = AiH, the (i + 1)th, (i + 2)th, 
... , (i + i)th rows of H should be linearly independent. 

On the other hand, the observability matrix takes the form, 

[ pT 0 JST 0 JQT 0 0 JnQT 0 
0= 0 QT 0 pT 0 JST ... In-lpT 0 JnST 

To investigate the rank of this matrix, we rearrange it as follows: 

I [PT JST JQT JnQT 0 0 0 0 ] o -- 0 0 0 0 pT QT JST JnST 

For the system to be observable, the following two conditions must be satisfied, 

rank [pT JST JQT 

where H' = [pT JST JQT], and 

rank [pT QT JST 

] (21) 

(22) 

(23) 

(24) 

where H" = [pT QT JST]. By substituting the P, Q, and S matrices, the H', H" matrices in 
Equation (23) and (24) can be represented as, 

4>1 4>i 0 0 0 0 

4>~ 4>~ 0 0 0 0 

I 4>! 4>~ 0 0 0 0 
H = 4>~ 4>~ ( -A4)4>~+1 ( -A4)~+q ( -A4)4>~+q+l ( -A4)4>4 (25) 

4>~ <Pn ( -An)4>~+l ( -An)<Pn+q ( -An)4>~+q+l ( -An)4>~ 

and 
4>1 4>i 4>i+1 4>i+q 

0 0 

4>~ 4>~ 4>~+1 ~+q 0 0 

/I 4>~ 4>~ 4>~+1 ~+q 0 0 
H = 4>~ 4>~ 4>~+1 ~+q ( -A4)4>~+q+l ( -A4)4>4 (26) 

4>~ <Pn 4>~+1 <Pn+q (-An)4>~+q+l (-An)4>~ 

Due to the similarity between the observability Equations (23), (24) and the controllahility 
Equation (20), the system is observable if both H' and H" matrices satisfy conditions (1) and (2). 
Therefore, the relation between the location of actuators (sensors) and controllability (observabil
ity) can be obtained. These results are summarized in the following theorems. 

Theorem 3.1 If the kth mode is controllable (observable), then there exists st least one actuator 
(sensor) not located on the corresponding node loci. 

Proof: In condition (1), the ith row vector of H (H', H") should be a nonzero vector. This cor
responds to the situation that for every mode shape function 4>i(X, Y) with ~o repeated eigenvalue, 
there exists one actuator (sensor) location (Xj,Yj) such that 4>i(Xj,Yj) = 4>; is nonzero. 0 



Theorem 3.2 i modes with the same natural frequency (AHi = AH2 = ... = Ai+i) are controllable 
(observable) if there exists at least i actuators (sensors) located at points (Xj"" Yj,,) (a = 1,2, .... i) 
such that 

[ 01 •• 
ifJh 

01.. 1 Hi ... 
det : : #:0 (27) ... 

ifJh ifJ
j2 ifJjl Hi i+l i+l 

where ifJi+i, ifJi+2, ... ,ifJi+l are the mode shape functions or the eigenfunctions corresponding to this 
natural frequency. 

Proof: In condition (2), the (i + l)th, (i + 2)th, ... , (i + i)th rows of H (H', H") are linearly 
independent if there are i linearly independent columns in the submatrix formed by the i + Ith, 
i + 2th, ... , i + ith rows of H matrix. This corresponds to the situation for which every set of i 
mode shape functions ifJi+i, ... , ifJi+i corresponding to same eigenvalue AHi = AH2 = ... = AHi, 
there should exist a set of (x j" , Yj,,) (a = 1, 2, ... i) such that Equation (27) is satisfied. 0 
A direct application of this result is that there should be at least a actuators (sensors) not located 
at the intersections of all the node lines of the same natural frequencies to make these modes 
controllable (observable). 

Theorem 3.3 The modes of a flexible plate cannot be controlled (observed) with less than three 
actuators (position sensors) I nor is it possible to control (observe) them with more than three 
collinear actuators (sensors). 

Proof: Since there are three zero eigenvalues corresponding to rigid body motion, it can therefore 
be concluded that there should exist a set of three actuator ( or position sensor, due to the 
o submatrix in the upper-right corners of H' and H" matrices) locations (Xj" Yit), (xh' Yh), 
(xj"Yh) so that, 

[ 

ifJ{l ifJ{2 ifJ{' 
det ifJ{l ifJ{2 ifJ{' 

ifJ~l ifJ~2 ifJ~' 

for some it,jz,h between 1 and m(p) (28) 

ifJi(X, Y), ifJ2(X, y) and ifJ3(X, y) denote the first three mode shape functions of the plate which 
correspond to one parallel translation and two rigid body rotations. Assuming ifJi(X, y) = 1, 
<h(x, y) = x, <hex, y) = y, Equation (28) implies that there exists three actuator ( position sensor) 
locations (Xj.,Yj.) (i = 1,2,3) such that, 

det [ X~l 
Yit 

1 
for some it, jz, h between 1 and m (p) (29) 

which means that these three points are not collinear. [J 

Corollary 3.1 The minimum number of properly located actuators (sensors) necessary to control 
(observe) the modes of a flexible plate is equal to max { 3, multiplicity of eigenvalue of the modes 
to control (observe) }. 

Proof: This is the direct result from the previous three theorems. 0 

3.2 Analysis with the Coupling Effect of Actuator Dynamics 

In the previous discussion of controllability and observability, no actuator dynamics were considered 
in the system state equation. Since we are interested in using magnetically levitation techniques 
to control the vibration, the unstable nature of magnetic forces should be taken into account. This 
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instability comes from the negative stiffness existing between the levitated object and the magnetic 
bearing pole face. The introduction of magnetic bearings into the system will significandy affect 
the dynamic behavior. Therefore, in this section we reformulate the problem and invest:igate the 
influence of magnetic bearings on the controllability and observability conditions. In general, the 
nonlinear magnetic force equation is linearized about an equilibrium point. The incremental force 
can then be represented by, 

(30) 

where kz is the unstable stiffness, z is the air gap distance, ki is the current stiffness constant and 
i is the control current. Assuming m magnetic bearings are used as actuators in the vibration 
isolation system, then Equation (30) is written in vector form as, 

(31) 

In this equation, f, z, i denote the m x 1 force, air gap distance, and control current vectors. Kz 2 

and Ki are both nonsingular , m x m diagonal matrices. The diagonal elements of Kz represent the 
unstable stiffness of each magnetic bearing while those of Ki are the corresponding current stiffness 
constants. Substituting Equation (31) into Equation(9) and using the relation that z = [R O]x, 
we can get the new state equation as, 

x=A'x+B'i (32) 

where 

(33) 

Using the same procedure as discussed previously, t~e system is controllable if and only if the 
matrix 

L' = [HKi (J + HKzR)HKi (J + HKzR)2HKi 

(J + HKzRt-lHKi] (34) 

has rank n. A first result is stated in the following lemma. 

Lemma 3.1 Given an integer p and matrices J, Hand W such that p E Z, J E Rnxn, H E R nxm 

and W E R mxm , The column space of the matrix JPHW is spanned by the column vectors of the 
matrix JPH. 

Proof: Assuming that the matrix H = [hI h2 
H. Let the elements of W be Wij, then 

h m ] where the h;'s are column vectors of 

JPHW JP [hI h2 hm]W 

JP [f>.h m tw;,.h;] L wo 2ho 
). } }. } 

j=1 j=1 j=1 

[t W
'
JPh m tw JPh] LW·2JPho 

}. } }. } }.n J 
j=1 j=1 j=1 

Because JPH can be expanded as [JPh l J Ph 2 JPhm]' it is obvious that the column space 
of JPHW is spanned by the column vectors of JPH. 0 

Now we state a controllability theorem for magnetically levitated vibration isolation syst.em .. 

2Due to the instability of the magnetic bearing, Kz is a positive definite matrix. 



Theorem 3.4 The system described by Equation (9) is controllable if and only if the system de
scribed by Equation (32). 

Proof: In order to show this, we need to prove that the rank of L' is the same as that of L. Since 
Ki is a common factor in each element of L', we can factor it out and write the L' matrix as, 

L' L"Kj 

where L" = [H (J + HKzR)H (J + HKzR)2H (J + HKzR)"-lH] . Since K j is a non

singular diagonal matrix, L" has the same rank as the matrix L'. We perform the algebraic 
manipulation on column vectors to reduce the L" matrix into the same form as the L matrix. 
From the lemma for the case of p = 0, we can use the columns of H, which is the first element of 
L" to eliminate HKzRH in the second element so that only the columns of JH remains. Then 
expand the third element as J 2H + JHKzRH + HKzRJH + HKzRHKzRH. The lemma again 
allows us to use the the columns of first element H and the new second element JH to reduce 
the third element into J 2H. Applying the same column reduced procedure to the 4th, 5th, ... , nth 
elements of L" matrix. We can reduced the L" into the same matrix as L. The algebraic manipu
lation of column vectors doesn't change the rank of the matrix L", therefore we conclude that. the 
L" matrix and the L matrix have the same rank, which implies L' matrix has the same rank as 
L. 0 

A direct application of the theorem is that the introduction of the magnetic bearings dynam
ics wouldn't influence the controllability condition discussed previously. And all the theorems 
mentioned before can be applied to the magnetic levitated vibration isolation systems. 

For the observability part, using the same argument, we can prove the magnetic bearing dy
namics wouldn't change the observability condition if there are m position sensors collocated with 
those m magnetic bearings. This is because if the m position sensors collocated with those m 
magnetic bearings used, the m x 1 output vector becomes y = [R 0] x. Using Equation (32), 
the observability condition can be deduced and is in fact similar to the controllability condition of 
Equation (34). 

3.3 Examples of Locating Actuators (Sensors) to Achieve Controllabil
ity (Observability) 

To apply the results obtained in the previous section, the eigenfunctions or the mode shape func
tions of the system need to be determined. Since there is no analytical solution for a flexible plate 
with free edges [13], approximate mode shape functions are found using with the Rayleigh-Ritz 
method. These mode shape functions allow us to get the node loci, which are the locus of points 
on the plate with zero amplitude corresponding to the normalized natural frequency. For the case 
of a square plate, the node loci of different normalized natural frequencies are shown in Figure 2. 
From the relationships obtained from the previous section, to control and observe the vibration of 
the plate, it can be inferred that we have to choose the actuators and sensors not located on the 
node loci associated with the desired frequency. Therefore, Figure 2 can be used as a guide line 
to properly locate the actuators and sensors so that the modes of interest may be controlled (ob
served) efficiently. Of course, it is necessary to check whether these locations satisfy the condition 
of linear independence for the modes with the same natural frequency. 

In order to apply the results obtained from the discussion of controllability and observability, 
the first 9 node loci together as a node map are shown in Figure 3. Some examples of locating the 
actuators and sensors are illustrated as follows: 

In Figure 4, the three actuators (sensors) are located in a straight line. Therefore, the rigid 
body rotation of the plate about this line cannot be controlled (observed). 

As shown in Figure 5, although the three actuators (sensors )aren't collinear, they are all placed 
on the node line of the sixth mode. Therefore, this mode cannot be controlled (observed). 
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Figure 2: The node loci of the first nine normalized frequencies 



/ 

1 

1 

~------I------+ 

I"" 1 //1 
I" 1 / 1 
1 " 1 / 1 
1 "" 1 // 1 
1 "" 1 // 1 

----~-----~------~----
1 /1" 1 
1 // 1 "" 1 
1 / I" 1 
1 / 1 " 1 
1 // 1 "" 1 
1 / 1 " 1 

--- ~-----~------

/ 
/ 

/ 
/ 

/ 

1 

1 
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• Actuator/Sensor 

Figure 4: Uncontrollability (unobservability) due to three collinear actuators (sensors) 
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• Actuator/Sensor 

Figure 5: Uncontrollability (unobservability) of the sixth mode due to actuators (sensors) located 
on the node line of this mode 

In Figure 6, since one actuator (sensor) is not located on any node line of the nine modes, it 
seems that all the nine modes are controllable (observable). However, due to the fact that the 
other two actuators and/or sensors are located at the intersections of the node line corresponding 
to the normalized frequency w· = 36.29, the condition for repeated eigenvalues makes these two 
modes uncontrollable (unobservable). 

Figure 7 shows four actuators (sensors) placed in symmetrical arrangement on the node line of 
the fourth mode. Therefore, the fourth mode is uncontrollable (unobservable). 

Figure 8 shows three actuators (sensors) which are located unsymmetrically on the plate. All 
of the nine modes in this are controllable (observable) because none of the actuators (sensors) are 
located on the node lines. 

4 Control System Characteristics for Collocated and N on
collocated Configurations 

In this section, we will examine proper actuator/sensor locations leading to a favorable open-loop 
system behavior. We will investigate the influence of the collocated and noncollocated actua
tor/sensor configuration on the control system characteristics, and then provide guide lines for 
achieving a favorable system behavior. 

The open loop transfer function matrix of the 2nth order system described by Equations (9) 
and (14) is, 

G(s) = C(sI - A)-lB (35) 

In the following analysis, it is assumed that only position sensors are used which corresponds to 
that C = [P 0]. If the corresponding elements of matrices A, Band C are substituted into the 



• Actuator/Sensor 

Figure 6: Uncontrollability (unobservability) of the seventh and eighth modes 

• Actuator / Sensor 

Figure 7: Uncontrollability (unobservability) of the fourth modes 
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• Actuator\Sensor 

Figure 8: Controllability (observability) using three actuators (sensors) 

right hand side of Equation (35), then the (i,j)th element of the G(s) matrix takes the form, 

= 
n 4>~i 4>~j 

{; Mk(s2 +wn 

"n [¢:';::j TIn (2 2)] 
L.....k=l k l=l,l¢k s + Wl 

(36) 

gi,j(S) denotes the transfer function from the jth actuator at location (xaj , YaJ to the i,th sensor 
at location (x." y.;). 

The transfer function gi,j (s), if without pole-zero cancellation, always has poles at ±jwl, ±jw2, 
... , ±jwn . If with pole-zero cancellation is possible, we can skip those cancellation pairs and focus 
only on the uncancelled ones. The numerator of Equation (36) has to be expanded as an 2( n - 1 )th 
degree polynomial and solved for the 2( n - 1) zeros. Because the coefficients of this polynomial are 
real and the Laplace variable s always appear with even power, if there is any complex root 0' + j,S, 
then 0' - jp, -0' + jJ3 and -0' + jp are also the roots of the polynomial. Therefore, for the transfer 
function to be nonminimum phase, the zeros can't be any positive or complex numbers. This 
implies that the zeros, like the poles, should be on the imaginary axis. Although such information 
may be known, there are still many ways to locate the zeros. In order to decide on the most 
favorable type of pole-zero plot, the merits of a conventional PD controller are evaluated. The 
following lemma and theorem allow us to compare the relative performances of different types of 
pole-zero plots. 

Lemma 4.1 For a system with the transfer function in the form of Equation (36), if thf ith pole 
located at ±jwi is stabilized by a PD controller and there are 2li zeros at ±jPl, ±jP2, ... , ±jPli 
such that Pl < P2 < ... < Pl; < Wi , then Ii - i = 2qi - 1 where qi is an arbitrary integer'. 

Proof: To prove this lemma, we look at the angle of departure of the ith pole. The angle of 
departure O'i of the ith pole is equal to 1800 -(sum of the angles of vectors to this poles from other 



Im(s) 

ith pole 

-------u~U-~~----------~Re(s) 

Figure 9: Calculation of the angle of departure for a PD controller 

poles)+(sum of the angles of vectors to this pole from zeros) [14). For the pole-zero plot shown in 
Figure (9), it can be shown that, 

fr; 180° - [(n + i-I) x 90° - (n - i) x 90°) + [8; + (n - 1 + £) x 90° - (n - 1 - £) x 90°) 

180° + 8; + (2£ - 2i + 1) x 90° (37) 

Because a stable PD controller is used, 0 < 8 < 90°, which means 180° + (2£ - 2i + 1) x 90° < 
fr; < 270° + (2£ - 2i + 1) x 90°. It is obvious that if the root locus of the ith pole goes to the 
stable region, then 90° ~ fr; ~ 270°. Equation (37) can satisfy this angle condition only when 
2£ + 2i + 1 = 4qi - 1, that is , £; - i = 2qi - 1. 0 

Theorem 4.1 If all 2n poles ±jw1, ±jw2, ... , ±jwn in Equation (36) are stabilized by a PD 
controller, then there should be one and only zero located between two consecutive poles jw;, jWi+1 
or-jw;, -jWi+1 fori = 1,2, ... , n-l. And the pole-zero plot should be the same as the one shown 
in Figure (10). 

Proof: For all the poles to be stablized by a PD controller, Lemma 4.1 should be true for all 
poles. Take the poles located at jw;, jWi+1 or -jw;, -jWi+1 for example, the necessary condition 
becomes, 

£;+1 - (i + 1) 

£; - i 

(a) 
(b) 

If (b) is substracted from (a), we get £;+1 - £; = 2(q;+1 - q;) + 1 which implies that £;+1 - £; is an 
odd number. Since £;+1 - £; represents the number of zeros between these two poles and can't be 
a negative number. From above arguments, £;+1 - £; has to be greater than or equal to 1. This 
means that there is at least one zero between two poles jw;, jWi+1 or -jw;, -jw;+l' Because there 
is only 2( n - 1) zeros for this transfer function and we have to place at least one zero in each of 
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Im(s) 

-------+------~ Re(s) 

Figure 10: A favorable pole-zero plot 

the 2(n -1) intervals between consecutive poles jw" jwi+l or -jw" -jWi+l for i = 1, 2, ... , n, the 
only pole-zero type can be achieved is the alternating pole-zero plot shown in Figure (10). 0 

Now we have proved that the only type of non minimum phase pole-zero plot can be stabilized 
by a conventional PD controller is the alternating pole-zero plot. In what follows, we limit ourselves 
to this case and investigate the condition on the transfer function to have such a dynamic behavior. 
This condition can be obtained from the following theorem, 

Theorem 4.2 The transfer function of Equation (36) has an alternating pole-zero plot as in Figure 
(10) if and only if either one of the following conditions is true, 

(i) 

p+q 

and 2: 
"=p+l 

or 

( ii) 

p+q 

and 2: 
k=p+l 

l/J~il/J:j 

M" 

[1/J~il/J:j ] 
M" 

I/J~i I/J:j 

M" 

[1/J~il/J:j ] 
M" 

> 0 

> 0 

< 0 

< 0 

for any kth mode with no repeated eigenvalues 

for p+ lth, p+ 2th, ... , p+ qth modes with same 
repeated eigenvalues 

for any kth mode with no repeated eigenvalufs 

forp+lth, p+2th, ... , p+qth modes with same 
repeated eigenvalues 

Proof: To simplify the notation, a" 's are used to denote rt>:;:? and all the eigenvalues are 
different. This condition will be relaxed later. Then the numerator Z(s) of Equation (36) can be 
written as, 

n n 

Z(s) = 2: a" II (s2 + wi) (38) 
"=1 l=l,li''' 



The 2(n - 1) roots of Z(s) which are represented by ±jZI, ±jz2, ... , ±jzn-l correspond to the 
zeros of the transfer function. For the system to have alternating pole-zero plot, we should have 
Wk < Zk < Wk+l for k = 1, 2, ... , n - 1. The necessary and sufficient condition for the above 
arguments to be true is, 

n n 

l=l,ltk l=l,ltk+l 

for k = 1, 2, ... , n - 1 (39) 

Since WI < W2 < ... < W n , the following product must be negative, 

n n 

sgn[ II (-w~ + wi) II (-W~+l + wi)] 
l=l,ltk l=l,ltk+l 

-1 

(40) 

If this result is substitubed into Equation (39), the necessary and sufficient condition becomes 
akak+1 > 0 for k = 1, 2, ... , n - 1. This condition is the same as either ak > 0 or ak < 0 for any 
k, which means that all the ak's have the same sign. If there are p + lth, p + 2th, ... , p + qth with 
the same natural frequency, then in Equation (36), all the p + lth, p + 2th, ... , p + qth can be 
summed up together so that there is no repeated poles in the transfer function. As the case of no 

eigenvalue multiplicity and using ap to represent L:1~!+1 [q,\t:j] and follow the same procedure, 
we can still conclude that ak for k = 1, ... , p, p+q + 1, ... , n, should be have the same sign. Even 
though we only discussed the case of one eigenvalue with multiplicity, if there are other repeated 
eigenvalues, the conclusion is the same as what stated in this theorem. 0 

Remark: 
q,'iq,4j + q,'iq,4j 

1.If any ~ or L:1=!+1[~] in Equation (38) is equal to zero, pole-zero cancellation occurs 
for the pole jWk or jwp 

2.For the special case of a collocated actuator and sensor pair, ¢>~i = ¢>:j, for k = 1, 2, ... , n. The 
ith condition is obviously satisfied. Therefore, the collocated system always has an alternating 
pole-zero plot as that of Figure (10). 

Finally, we prove the next theorem to guarantee the stability of a PD controller applied to the 
alternating pole-zero plot of the system in Equation (36). 

Theorem 4.3 The transfer function of Equation (36) has an alternating pole-zero plot if and only 
if it can be stabilized by a PD controller. 

Proof: The necessary condition of this theorem has already been proved in Theorem 4.1. For the 
sufficient part, first we formulate the closed loop characteristic equation as, 

( 41) 

where /{pd is the gain of the PD controller and -c < 0 is the zero introduced by the controller. In 
addition, the ak's have the same meaning as in Theorem 4.2. We have already shown in Theorem 
4.1 that alternating pole-zero plot will make the angle of departure of all open loop poles pointing 
to the left hand plane. If we can prove that the root locus of this plot with a PD controller never 
cross the imaginary axis for any finite gain I/{pdl < 00, then the stability is always guaranteed. 
Assuming the root locus crosses the imaginary axis at jw. By substituting s = jw into Equation 
(41) and equate both the real and imaginary parts to zero, we have, 
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(42) 

and 

(43) 

Equation (43) is true only when 

w o 

or t [ak IT (_W
2 + wi)] 

k=1 l=1,l;tk 

o 

For the former case, if w = 0 is substituted into Equation (42), then the equation becomes, 

n n n 

IT w~ + KpdC L ak IT wi = 0 
k=1 k=1 l=l,l;tk 

Since all ak's have the same sign and if a /(pd of suitable sign is used, the equation can never be 
equal to zero. Therefore, 0 is not on the root locus. In the latter case, the solution of w corresponds 
to the open loop zeros of the system. Then the equation is substituted into Equation (42) again. 
Equation (42) is true only when /(pd = 00 or /(pd = -00 with the sign dependent on the sign 
of the ak's. This is due to the fact if finite value of Kpd is used, the first term of Equation (42) 
becomes zero while the second term is nonzero because of the alternating pole-zero plot ( the open 
loop zeros can never be equal to the open loop poles). From above argument we have proved that 
the alternating pole-zero plot can always be stabilized by PD controller, which is the sufficient 
condition of this theorem. 0 

In order to apply the above theorem and illustrate the consequence of a given actuator/sensor 
system configuration, we consider only the first vibration mode. Because the first three modes 
correspond to the rigid body motion with eigenvalue equal to zero, it can be shown from Theorem 
4.2 that the transfer function between the ith input and jth output will have an alternating pole
zero plot if and only 

or 

(i) 

( ii) 

(i) 

(ii) 

(44) 

(45) 

In order to gain more insight, the mode shape functions obtained from the Rayleigh-Ritz 
method are substituted in the above equations. Consider the case of a rectangle plate, if the 
length-to-width ratio % is between 0.65 and 1.54, the first four mode shape functions can be cal
culated as ¢1(X, y) = I, ¢2(X, y) = /b2(Y)' ¢3(X, y) = fa2(X), ¢4(X, y) = f a2(X)!h2(Y) and M1 = M2 
= M3 = M4. If they are substituted, Equation (44) and (45) can be rearranged as, 

(i) 112 + [~(x •• - ~), tcy.; - ~)l [~«Xaj - ~), tcYaj - ~)l ~ 0 

(ii) (~-x • .)(~-xaJ(~-Y • .)(~-YaJ~O (46) 



A 

• actuator 
o sensor 

Figure 11: Case 1 for locating the actuator and sensor to achieve desirable alternating pole-zero 
type 

and 

(i) 112 + [~(X'i - ~), HY'a - !)] [H(xaj - ~), HYaj - !)] ~ 0 

(ii) (I-x.a)(~-XaJ(~-Y.')U-YaJ ~O (47) 

Conditions (i) of Equation (46) and (47) can be interpreted geometrically as comparing /2 with the 
inner product of two vectors. These two vectors have starting points at the center of the plate and 
end points at the locations at the actuator or sensor, but their x and Y components are normalized 
with respect to a and b individually. If the rectangle plate are divided into four quadrants by the 
lines x = ~ and y = i, then condition (ii) of Equation (46) is satisfied if the actuator and sensor 
are in the same quadrant or they are in opposite quadrant individually. However, condition (ii) 
of Equation (47) is satisfied if the actuator and sensor are in the adjacent quadrants individually. 
Therefore, for the transfer function to have an alternating pole-zero plot, there are basically three 
ways to locate the actuator and sensor. These three cases are described below . 

• Case 1 : Locate actuator and sensor in the same quadrant as shown in Figure (11). Condition 
(i) of Equation (46) is satisfied automatically because the inner product of the two normalized 
vectors are always greater than zero. If either the actuator or sensor is located at the node 
lines of ¢>4(X, y) which are composed of the lines x = ~ and y = ~, then the zeros cancel the 
two poles symmetrically on the imaginary axis and there are only two poles at the origin. 

• Case 2 : Locate actuator and sensor in the opposite quadrants individually and check if 
condition (i) of Equation (46) is satisfied. For the special case of a square plate as shown in 

Figure (12), if the sum of ~~ and the inner porduct of vectors OA and 013 is greater than 0, 
then the condition is satisfied. Also when the sum is equal to zero, then the zeros cancel the 
two poles at the origin and there are only two poles symmetrically on the imaginary axis. 
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• actuator 
o sensor 

B 

Figure 12: Case 2 for locating the actuator and sensor to achieve desirable alternating pole-zero 
type 

• Case 3 : Locate actuator and sensor in the adjacent quadrants individually and check if 
condition (i) of Equation (47) is satisfied. By the same argument in case 2, if the plate is 
square, the sum of ~; and the inner product of vectors OA and DB of Figure (13) should be 
less than O. One obvious result is that the angle between the two vectors has to be greater 
than 90 degrees. Also as in case 2, when the sum is equal to zero, then the zeros cancel the 
two poles at the origin and there are only two poles symmetrically on the imaginary axis. 

5 Effects of Damping 

In the above discussion, we assume that there is no energy dissipation or system damping in the 
vibration of a flexible plate. But damping normally exist in the physical systems. Especially in 
the vibration isolation table, damping is a favorable effect because with proper damping mecha
nism (e.g. viscoelastic material), the higher frequency vibrations that reach the table top can be 
attenuated rapidly. 

For the case of weak damping effects, it can be guaranteed that the controllability and observ
ability conditions obtained in Section 3 are still acceptable. This is because the controllability and 
observability are preserved under sufficient small perturbation such as the damping effect [15, 16]. 
However, when the damping is not negligible, the modes will couple with each other. Therefore, 
certain modes originally uncontrollable (unobservable) in the case of no damping may become 
controllable (observable) [6]. If the system damping is sufficiently large. It is also pointed out in 
[6] that the number of actuators (sensors) to achieve controllability (observability) are expected to 
be reduced because of the significant coupling effect. 

On the other hand, the influences of damping on the system pole-zero plot is that the open loop 
poles are now placed in the left hand plane instead of being on the imaginary axis. The larger the 
damping, the further the poles are from the imaginary axis. Therefore damping tends to stabilize 
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Figure 13: Case 3 for locating the actuator and sensor to achieve desirable alternating pole-zero 
type 

the overall system and make the controller easier to implement. 

6 Conclusion 

This paper investigated the relationships between actuator and sensor locations and the dynamics 
and control characteristics of a magnetically levitated vibration isolation system. The problem 
was formulated using orthogonal mode shape functions based on the Rayleigh-Ritz method. A 
lumped-parameter model of a flexible vibration isolation table top is used to investigate the sys
tem's controllability and observability including the coupling effects introduced by by the magnetic 
bearing. The selection of proper actuator and sensor locations leading to a controllable and observ
able system were discussed. Necessary and sufficient conditions were derived for proper selection 
of actuator and sensor locations, and for reducing the controller complexity. The results are illus
trated by examples using approximate mode shape functions. Such information is important for 
the overall design of ultra high performance vibration isolation systems. 

A Rayleigh-Ritz method 

Assuming that the plate is vibrating with a mode shape <1>( x, y) and frequency w , the Rayleigh-Ritz 
method proceeds by calculating the maximum potential energy from Equation (6), 

(48) 
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Figure 14: The first three modeshape functions of prismatic beam with free ends 

Also the maximum kinetic energy from Equation (5) is given by, 

D 2 ( 2 
Tmax = "2Phw fA tP dA (49) 

By equating the above two equations, an expression for the frequency w is obtained, 

2 ph Vmax 
w = '2 fA tP2dA (50) 

The Rayleigh-Ritz method assumes that the mode shape functions can be expanded by a linear 
series of "admissible" functions and adjusts the coefficients in the series to minimize Equation 
(50). For the case of rectangle plate with length a and width b, the mode shape function tP(x,lI) is 
expanded as : 

3 3 

tP(x,y) = E E Amnlam(x)lbJy) (51 ) 

where the function 1/3. (.) is the ith mode shape function of a prismatic beam with free ends and 
length {3. The first three mode shape functions are plotted in Figure 14. We can write these "first 
three modeshape functions as : 1/31 ({) = 1, 1/3~ ({) = V3(1-7f), 1/33 ({) = cosh( 4.;3f,) - cos( 4.;3f,)_ 

0.983[sinh(~) - sin(4.;3{)]. By substituting these into Equation (51), Equation (50) becomes 
a function or Amn . Then we minimize it by taking the partial derivative with respect to each 
coefficient and equating to zero then follow the same procedure as in [17], we arrive at a set of 
equations each of which has the form, 

3 3 

'" '" (il:) _ L..- L..- [Cmn - Abmn]Amn - 0 (52) 

where 



Figure 15: The 1st mode with normalized frequency 0 

C~~) = Vr[EmiEkn + EimEnkJ + 2(1 - vHHimHkn, Dmn = 1, for mn of ik 

C(ik) b 4 a3 
4 2 aE 1:' + 2(1 )aH H C 1 ~ 'k mn = afi + i)'J'fk + vr iiI'kk - V r ii kk, Vmn =, lor mn = t 

and 
Eim = f3 It ff3i(e)d2J:l~(e)cJ.e, Him = f3 It tif~?) tif!l3{(0cJ.e, fl = f2 = 0,f3 = 4.730 

The above set of linear equations is a typical eigenvalue problem in linear algebra. In this paper, 
we take the Poisson ratio v as 0.3 and solve Equation (52) using the Matlab package and thus get 
nine approximate mode shape functions and corresponding normalized natural frequencies. For the 
special case of square plate, the nine mode shape functions and corresponding normalized natural 
frequencies were computed using Matlab and found to be, 

wi = 0 
w2 = 0 
w; = 0 
w.i = 14.07 
Ws = 19.01 
W6 = 24.62 
wi = 32.69 
Wg = 32.69 
w~ = 66.82 

<Pl(X,y) = 1 
<P2(X, y) = hey) 
<P3(X, y) = hex) 
<P4(X, y) = h(x)h(Y) 
<Ps(x, y) = 0.7071h(y) - 0.7071h(x) 
<P6(X, y) = 0.7069h(y) + 0.7069h(x) + 0.0262h(x)h(y) 
<P7(X, y) = h(x)h(y) 
<Ps(x,y) = h(x)h(Y) 
<P9(X,y) = -0.0185h(y) - 0.0185h(x) + 0.9497h(x)h(y) 

(53) 

where the normalized frequency w· = !!tf-V12P(k-V2) and /j(f.) = ff3j(f.) as appeared in the 
appendix. Figure 15 to Figure 23 are the 3-D approximate modeshape functions of square plate. 
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Figure 16: The 2nd mode with normalized frequency 0 

Figure 17: The 3rd mode with normalized frequency 0 
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Figure 18: The 4th mode with normalized frequency 14.07 

Figure 19: The 5th mode with normalized frequency 19.81 
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Figure 20: The 6th mode with normalized frequency 24.62 

Figure 21: The 7th mode with normalized frequency 36.29 
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Figure 22: The 8th mode with normalized frequency 36.29 

Figure 23: The 9th mode with normalized frequency 66.82 
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