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1 Introduction 

Magnetic bearings represent a promising approach for achieving positioning with nanometer 
resolution. The first author has constructed a high-precision linear bearing which 
demonstrates 5 nm short-term position stability. This system represents the experimental 
implementation of an idea presented in [1] and has been investigated as part of the first 
author's Ph.D. thesis [2]. 

This study was initiated with support from the Molecular Measuring Machine (M3) 
project at the National Institute of Standards and Technology [3]. The form-factor of the 
bearing was thus chosen such that it was compatible with the M3 crossed-slide design. The 
bearing technology is also highly suitable for other precision applications, such as in stages for 
photolithography and diamond turning machines; these application areas provide the focus for 
our current research. 

As shown in Figures 1-4, a 10.7 kg platen measuring 125 mm by 125 mm by 350 mm is 
suspended and controlled in five degrees of freedom by seven electromagnets, labelled as B1 
through B7. Five capacitive probes located in the bearing centers measure position with 
nanometer resolution. The seven points at which the bearing forces act on the platen are 
shown as arrows and the five points at which the position measurements are taken are 
indicated as dots in Figure 1. The scale of Figures 2, 3, and 4 is indicated by the 100 mm 
reference shown in Figure 2. 

The suspension acts as a linear bearing, allowing linear travel of 50 mm in the long axis 
of the platen. In previous work [2,4]' the long-travel degree of freedom is not actively 
controlled. Efforts are currently directed at achieving control of this degree of freedom with 
50 mm travel through a novel magnetic suspension linear motor. This motor consists of an 
array of permanent magnets attached to the moving platen and a stator array of coils 
attached to the fixed machine frame as shown in Figs. 2-4. Prototypes of this linear motor 
are currently under construction. Position in this degree of freedom is transduced by a laser 
interferometer. For simplicity, optics for this interferometer are not shown in the figures. 

The key feature of the linear motor is that it affords control of forces in two degrees of 
freedom, one parallel to the air gap and lying on the axis of the magnet array and one 
perpendicular to the air gap. Thus it is possible to simultaneously control translation and 
suspension with a single motor structure. The motor design and control are the focus of this 
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Figure 1: Points at which bearing forces are applied to platen, and points at which platen 
position is measured. 
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Figure 2: Side view of bearing and linear motor assembly. 
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Figure 3: Top view of bearing and linear motor assembly. 
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Figure 4: End view of bearing and linear motor assembly. 
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paper. 
The paper is organized as follows. In the next section, the electromechanical 

characteristics of the linear motor are developed, and an example design is presented. With 
these results in hand, it is then shown how two degrees of freedom can be controlled using this 
linear motor. Following this, the conceptual design for a precision X-V stage driven by four 
such motors is described. It is anticipated that this stage can achieve nanometer motion 
control, with travel in X and Y of several hundred millimeters. Finally, suggestions for further 
work are presented. 

2 Motor fields and forces 

To calculate the electromagnetic forces, the motor is idealized as a two dimensional structure 
as shown in Figure 5. Here, the motor is assumed to have a depth of w into the paper and to 
extend indefinitely in the ±z-direction. The stator is fixed in the laboratory frame x, y, z. 
The primed coordinate frame x', y', z' is fixed in the layer of magnetization, and is displaced 
from the unprimed frame by (xo + ~)ix + zoiz. 

The magnet array is modeled by a half-infinite region of sinusoidally distributed, 
x-directed magnetization Mx = ReMoe-ikz'. The magnetization layer is referred back to the 
unprimed frame by substituting z' = z - Zo into Mx which gives Mx = ReM e-ikz, with 
complex amplitude M = Moeikzo . 

The stator is modeled by a sinusoidally distributed, y-directed current density 
Jy = Re}e-ikz, in a layer from x = 0 to x = ~. The complex amplitude) is a function of the 
winding density TJo, and the two phase currents, II and 12 • Specifically, Re} = 11TJO and 
1m} = 12TJo. Throughout this discussion, the complex amplitudes indicated by a tilde 
represent the temporal variations in both amplitude and spatial phase. 

The model is idealized in several ways. First, while the stator current in the real motor is 
distributed down the axis of the motor in a spatial square-wave, in the model the current 
density is sinusoidally distributed at the spatial fundamental of the actual stator current 
distribution. Further, although the real magnets are of finite thickness and distributed in a 
spatial square-wave of magnetization, we model the magnetized region as of half-infinite 
extent and with the magnetization distributed sinusoidally in space at the spatial 
fundamental of the actual magnetization distribution. It is reasonable to model only the 
fundamental components of magnetization and current, as these are responsible for the bulk 
of the motor force production. The additional harmonics present in the actual motor can 
readily be added as Fourier series components built upon the solution we develop herein. 

The fields and forces for the finite-thickness stator in Figure 5 are obtained by first 
studying a simpler model as shown in Figure 6, in which the excitation consists of a current 
sheet (spatial impulse). Then, with the finite-thickness stator current distribution written as 
an integral of spatially-distributed current sheets, the linearity of the solution is exploited to 
write the forces on the finite thickness stator in the form of a convolution integral. This 
integral is readily solved, yielding the forces on the finite thickness stator. 

The analysis follows the techniques and notation from [5], chapters 2, 3, and 4. The 
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Figure 5: Geometry which represents the current density model of linear motor. 
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Figure 6: Geometry which represents current sheet model of linear motor. 
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magnetic field is given as the gradient of the magnetic scalar potential H = - \l'IjJ. Fields and 
potentials are represented as the real part of a complex amplitude multiplied by a complex 
exponential in z. Superscripted letters denote a quantity evaluated at the corresponding 
boundary. 

At the magnetization boundary the potential is continuous, ~c = ~d, and the normal field 
is discontinuous by the magnetization, fI~ - fI; = -it. At the current sheet, normal H is 
continuous, fI; = fI!, and the tangential field is discontinuous by the value of the surface 
current, fI: - fII = -f<, or alternatively ~e - ~1 = j~. These boundary conditions are 
summarized below 

~c -d 'IjJ 
fIe -1 

x H::c 

~e _ ~1 .f< 
)-

k 
fIe _ fId 

x x -it 

Applying the transfer relations from Section 2.16 of [5] yields the following four equations 
among the field and potential complex amplitudes at the boundaries. 

fIc 
::c 

k 'ljJc 

-d 
Hx 

-d k -e 
-k coth( ku) 'IjJ + sinh( ku) 'IjJ 

fIe -k - -
sinh( ku) 'ljJd + k coth( ku) 'ljJe ::c 

-1 
Hx _k~1 

where u = Xo + ~. 

(1) 
(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

Together, equations (1 )-(8) form a set of eight equations in eight unknowns, which are 
driven by the sources Mx and Ky. 

In order to calculate the normal and tangential forces exerted on the platen, the potential 
and normal field at boundary (d) are calculated from equations (1)-(8) as: 

(9) 

and 

(10) 

The tangential field fI: is related to the potential ~d by the negative of the gradient with 
respect to z. Thus 

(11) 

The force acting on a volume of the magnet array is given by the integral of the Maxwell 
stress tensor over the surface enclosing this volume. For a spatially-periodic structure, the 
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Figure 7: Showing the components of the Maxwell stress tensor acting on a surface which is 
used to find the forces acting on the magnet array. 
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integration is simplified if the volume encloses a single spatial period. The components of the 
stress tensor acting on such a volume are shown in Figure 7. The integrals of Txx and Tzx on 
surface 83 are found to equal zero. Also, the Txz and Tzz components on 82 and 84 cancel, 
since these surfaces are one spatial wavelength apart. The only non-zero contribution is on 81. 

Over an integer number of spatial periods, this force can be written as the spatial average on 
~ multiplied by the area of the surface. Specifically, the normal force acting on one spatial 
period of the magnet array is given by 

(12) 

where the expression (-) z stands for the spatial average with respect to z and Am = w27r / k is 
the area of one spatial period of the motor. Similarly, the tangential force is given by 

(13) 

The minus signs in these expressions are accounted for by the direction of the stress tensor 
components acting on 81 which is the bottom surface. 

The stress tensor for magnetically-linear materials derived from the Korteweg-Helmholtz 
force density ([5], section 3.10) is 

J1. 
7' .. - II.H·H· - -fJ··HkHk .l.IJ - r 1 J 2 IJ (14) 

using the Einstein summation convention where since the k's appear twice in the same term 
they are to be summed from one to three. A final useful identity is the averaging theorem ([5], 
section 2.15). 

(ReAe-jkzReBe-jkZ) z = ~ReAB*. (15) 

Applying equations (12)-(15) with the results (10) and (11), the forces are found to be 

and 

(17) 

Thus we have derived the forces acting on the magnet array due to a sinusoidally distributed 
current sheet separated from the magnet array by a distance u. 

Returning to the finite thickness of sinusoidally distributed current density shown in 
Figure 5 the forces acting on the magnet array in this case can be determined by summing the 
forces due to multiple current sheets of the form shown in Figure 6. That is, we integrate 
from x = 0 to x = ~ the force on the magnet array resulting from a current sheet at location 
x with intensity j{ = Jdx. Specifically, . 

(18) 
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and 

(19) 

In writing these integrals, the separation distance ~ + Xo - x between the differential current 
element and the magnet array lower surface has been used to replace u in (16) and (17). Since 
within the stator J is independent of x, evaluating these integrals gives 

Fx = A;;o (Im(i)Re(M) - Re(i)Im(M)) e-kx0 (1_ e-k~) (20) 

and 

(21 ) 

As stated earlier, the current density J is driven by two phase currents Rei = 11 'Tfo and 
Imi = 12 'Tfo, The forces in terms of these phase currents are found by using these relations 
and substituting the earlier derived result M = Moeikzo into (20) and (21). In matrix 
notation, the resulting equations are 

[ 
Fx 1 = oMoGe-kxo [-sin(kzo) c~s(kzo) 1 [ II 1 
Fz 'Tf cos(kzo) szn(kzo) h 

where several constants have been collected into G = Ar;lo (1 - e-k~). The Xo and Zo 

dependencies are explicitly retained since these variables represent motion of the magnet 
array relative to the stator. This completes the derivation of the motor force equations. 

3 Commutation and control 

(22) 

In operation, the motor will be used under closed-loop control. A loop controlling two degrees 
of freedom with a single linear motor is shown in block diagram form in Figure 8. Here we 
assume that a single linear motor is attached to a mass M which is allowed to move in only 
two degrees of freedom x and z. This is the same as assuming that the motor drives through 
the center of mass. If this assumption is not met, then the model will be more densely 
interconnected, but the control issues remain essentially unchanged. The linear motor 
currents II and 12 are assumed to be driven by a current amplifier. The current setpoints lsI 

and 1s2 are generated by the block labelled Commutation Laws. The function of this block is 
to determine these setpoints such that the motor applies forces Fx and Fz which are equal to 
the desired forces Fdx and Fdz ' If this is properly accomplished, then the system appears 
linear and decoupled from inputs Fdx and Fdz to outputs x and z, and can be controlled by 
two independent linear compensators which act on errors ex and ez. 

The commutation laws which achieve this decoupling are derived by inverting (22) to 
yield 

[
lsI 1 e

kxo 
[-sin(kzo) cos(kzo) 1 [ Fx 1 (23) 

1s2 - 'TfoMoG cos(kzo) sin(kzo) Fz ' 

This system of equations takes the desired normal and tangential forces and maps them to the 
currents needed to produce these forces. To the extent that the commutation laws are 
accurate, this decouples the two degrees of freedom. 
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4 Power dissipation 

In a specific implementation, the maximum available force is limited by power dissipation in 
the stator windings. To develop the thermal limits imposed on the motor design, the power 
dissipation for a single sinusoidally distributed phase is calculated as follows. The power 
density in a region of conductivity (j carrying current density J is 

J2 
P = -. (24) 

u 
In general, the current density is 

J = ReJe-ikz = Re(J) cos(kz) + Im(J) sin(kz). 

With only a single phase excited, J becomes 

J = 117]0 cos( kz). 

The differential power element is 

127]2w~ 
dP = 1 0 cos2(kz)dz 

u 

The power dissipation PA per spatial wavelength ). = 2; is determined by integrating 
equation (27) over this wavelength. Thus 

2,.. 12 2 J\ 

P -iT 17]owu 2(k)d A - cos Z z. 
o u 

Evaluating this integral gives 
I2'112w~). P

A 
= _1=--·.:....;:/0 __ 

2u 
A prototype linear motor stator of length 1= 50.8 X 10-3

, width W = 0.102m, depth 
~ = 7.62 X 1O-3m, spatial wavelength), = 50.8 X 1O-3m, and winding density 

(25) 

(26) 

(27) 

(28) 

(29) 

7]0 = 4.4 X 106 turns/m2 was constructed using number 26 copper wire. When supplied with 
approximately 10 W, this stator experiences a temperature rise of 50°C. This experiment 
provides an estimate of 5°C /W for the stator temperature coefficient in this geometry. 

For a two-phase motor of these dimensions, with a phase current II = lA, equation (22) 
yields a force level of 33.8 N. This force is sufficient to accelerate a 10 kg platen at more than 
0.3 times the acceleration of gravity. At this current, equation (29) yields a power dissipation 
of 6.8 W. Using the temperature coefficient developed above, this results in a tempera.ture rise 
of 34°C. 

This temperature rise is well within the thermal limits of the motor materials, but is still 
a large power dissipation in the context of a precision machine, as the resulting thermal 
expansion can destroy machine accuracy. This problem can be addressed by taking advantage 
of the force/power scaling laws. Specifically, since power increases as the square of current, 
and force increases linearly with current, if the motor area is increased by a factor of n, then 
the current required to achieve a given force is reduced by this factor. However, with this 
reduced current, the power density is reduced by n2

, and thus the total power is reduced by n. 
Thus it is likely that a larger motor will be used in the final design. 
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5 Magnetic bearing X-Y stage 

Given a magnetic suspension linear motor as developed above, various stage geometries are 
possible. One such geometry is shown in Figure 9. Here, four linear suspension motors are 
combined to act on the top surface of a platen to implement an x-Y stage suitable for 
photolithography. The stators are labelled 31 through 34 and drive against four magnet 
arrays which are shown as grey rectangles. Stators 51 and 53 drive the platen in the 
Y-direction and stators 32 and 34 drive the platen in the X-direction. The four stators are 
driven appropriately to control the remaining four platen degrees of freedom. 

The Linear Modal Compensator block consists of separate lead/lag compensators for 
each of the six degrees of freedom. The Compensate Geometric Nonlinearities block inverts 
the kinematic relations to translate forces and torques specified in the platen frame (where 
the system appears as linear) into forces specified in the stator frame (where they are actually 
applied to the platen). The Motor Commutation and Power Amp blocks each implement (23) 
for their respective stator assembly and contain power amplifiers for each of the stator phases. 

This X- Y stage represents the long-term focus of our design efforts. In order to gain 
experience with the construction and control of the linear motor, the linear bearing system of 
Figs. 2-4 will be used as a test-bed for a single linear suspension motor. The design will be 
refined here before advancing to the X-Y system shown in Fig. 6. 

6 Conclusions and suggestions for further work 

We have shown the design and analyzed the electromechanics of a linear motor suitable for 
independently controlling two suspension degrees of freedom. This motor, at least on paper, 
meets the requirements for driving an X-Y stage of 10 kg mass with about 4 m/sec2 

acceleration, with travel of several hundred millimeters in X and Y, and with reasonable 
power dissipation. A conceptual design for such a stage has been presented. 

However, this design has not yet been verified experimentally. A prototype of the linear 
motor is in construction and will be tested shortly. Initial testing is expected to take the form 
of operating the linear motor on a multi-axis load-cell in order to determine the ext.ent to 
which the actual motor operation matches the theory developed herein. The commutation 
laws can then be modified based upon experimental data. Once the motor operation is 
verified experimentally, a single linear motor will be attached to the linear bearing as shown 
in Figures 2-4, in order to gain experience with control issues. After satisfactory testing on 
the linear bearing, the system shown in Figure 9 will be constructed in order to achieve the 
end goal of control of planar motion with 200 mm travel. 

The systems described above can be improved in several ways. Currently, the Hnear 
bearing operates with purely linear control of the seven support electromagnets. The 
large-signal closed-loop performance of the bearing could be improved by including nonlinear 
compensation of the electromagnet force characteristic, as described in [6]. Additionally, the 
background noise of the five capacitive sensors currently limits the position stability. Thus it 
would be fruitful to investigate improved sensor techniques. Also, further work is needed in 
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developing sufficiently accurate and robust control techniques for the multivariable bearing 
system. Here, mechanical and electrical noise sources, uncertainties in the plant parameters, 
quantization of signals in the discrete-time controllers, saturation of power amplifiers and 
other non-idealities need to be considered as they impact the overall system performance. 
Finally, the magnet array technology developed by Halbach for linear accelerators [7,8] 
appears to be highly applicable to the linear motor magnet array. These magnet arrays use 
rotated blocks of magnets to provide a highly sinusoidal magnetic field concentrated on only a 
single side of the magnet array and thus a stronger fundamental component to interact with 
the stator winding. A magnet array using Halbach's topology is currently in design. 

In conclusion, this paper has demonstrated the theoretical feasibility of linear and planar 
bearings using single or multiple magnetic suspension linear motors. It remains to 
demonstrate this feasibility experimentally, and we are proceeding in this direction. 

References 

[1] Slocum, A.H., and Eisenhaure, D.B., "Design Considerations for Ultra-Precision Magnetic 
Bearing Supported Slides," NASA Magnetic Suspension Technology Conference, Hampton, 
Va. Feb. 2-4, 1988. 

[2] Trumper, D.L., "Magnetic Suspension Techniques for Precision Motion Control," Ph.D. 
Thesis, Dept. of Elec. Eng. and Compo Sci., M.I.T., Camb., Mass., Sept., 1990. 

[3] Teague, E.C., "The National Institute of Standards and Technology molecular measuring 
machine project: Metrology and precision engineering design," Journal of Vacuum Science 
Technology, B7 (6), Nov IDec, 1989, pp. 1898-1902. 

[4] Trumper, D.L., and Slocum, A. H., "Five-Degree-of-Freedom Control of an Ultra-Precision 
Magnetically-Suspended Linear Bearing," NASA Workshop on Aerospace Applications of 
Magnetic Suspension Technology, NASA Langley Research Center, Hampton, VA, 
Sept. 25-27, 1990. 

[5] Melcher, J.R., Continuum Electromechanics , MIT Press, Camb., Mass., 1981. 

[6] Trumper, D.L., "Nonlinear Compensation Techniques for Magnetic Suspension Systems," 
NASA Workshop on Aerospace Applications of Magnetic Suspension Technology, Hampton, 
VA, Sept. 25-27, 1990. 

[7] Halbach, K., "Design of Permanent Multipole Magnets with Oriented Rare Earth Cobalt 
Material," Nuclear Instruments and Methods, 169, 1980, pp. 1-10, North-Holland Publishing 
Co. 

[8] Halbach, K., "Physical and Optical Properties of Rare Earth Cobalt Magnets," Nuclear 
Instruments and Methods, 187, 1981, pp. 109-117, North-Holland Publishing Co. 

103 


