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ABSTRACT 

Dynamic circuit theory is applied to  several magnetic suspensions associated 
with maglev systems. These suspension systems are the loop-shaped coil guideway, the 
figure-eight-shaped null-flux coil guideway, and the continuous sheet guideway. 
Mathematical models, which can be used for the development of computer codes, are 
provided for each of these suspension systems. The differences and similarities of the 
models in using dynamic circuit theory are discussed in the paper. The paper 
emphasizes the transient and dynamic analysis and computer simulation of maglev 
systems. In general, the method discussed here can be applied to many electrodynamic 
suspension system design concepts. It is also suited for the computation of the 
performance of maglev propulsion systems. Numerical examples are presented in the 
paper. 

INTRODUCTION 

A maglev system uses three electromagnetic forces: the levitation, propulsion, 
and guidance forces. These forces determine the dynamic performance of the maglev 
vehicle. The computations of these magnetic forces may differ slightly from those in 
conventional electrical machines for the following reasons. First, knowledge of three- 
dimensional time- and space-dependent magnetic forces are required in a maglev 
system because the six directions of motion of a maglev vehicle are determined by these 
magnetic forces. Second, space harmonics, which result from the end-effect and the 
discontinuous distribution of the magnets aboard the vehicle, play much more 
important roles in the performance of a maglev vehicle. Thus, the performance 
analysis based on a fundamental traveling wave used in most conventional machines is 
inadequate. Third, transient and dynamic performance associated with vehicle 
motions, not steady-state performance, is emphasized in the maglev system. 

Several approaches are widely used for the computation of magnetic forces in 
maglev systems. The finite-element method is one of the more powerful numerical 
techniques for solving Maxiwell's field equations. For given boundary conditions and 
specified system geometry, one is able to  obtain sufficient information for a system by 
using two- and three-dimensional finite-element computer codes. However, when a 
system involves relative motions with space and time dependences, the finite-element 
method becomes difficult because a great amount of computing time is required to obtain 
the force-speed or  force-time characteristics. In addition, most commercial finite- 
element computer codes that are available do not include the problems associated with 
moving conductors. Fourier transformation and harmonics analysis, in combination 
with numerical techniques, is another powerful method in maglev analysis that can be 
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used to determine the lift and drag forces in a continuous sheet guideway. The method, 
however, is usually limited to a two-dimensional steady-state analysis with an 
assumption of infinite guideway width. 

method, is a suitable approach for maglev applications. It can overcome some of the 
limitations mentioned above and can be used to perform three-dimensional 
electrodynamic analysis of maglev systems. The dynamic circuit theory treats an 
electrodynamic system in terms of space- and time-dependent circuit parameters 
governed by a set of differential equations in matrix form. When plate or sheet 
conductors are considered, the method divides the conductors into many zones, each of 
which carries a different current. The lumped-circuit parameters for every conducting 
zone are then determined, and a system of equations are formed. Once the system of 
equations is solved for the current distribution, the forces acting between the 
electrodynamic system components can be readily calculated in a straight forward 
manner. Therefore, the performance of the system can be investigated. Since the 
equations are usually solved for the currents in the time domain, the method is well 
suited for transient and dynamic analysis and for the computer simulation of 
electrodynamic systems, such as maglev trains, electromagnetic launchers, and other 
electrical machines. In particular, the method is currently being used at Argonne for 
the computer simulation of laboratory experiments, the design and analysis of maglev 
test facilities, and studies of conceptual maglev system designs. 

Analyses of rotating electrical machines based on the general theory of electrical 
machines are discussed by Morgan (ref. 1). Analyses of linear machines using the 
mesh-matrix method have been reported (refs. 2 and 3). The dynamic circuit theory 
used for electromagnetic launcher analysis and simulation was discussed in several 
publications (refs. 4,5 and 6). As in the maglev system, the transient and dynamic 
performance is emphasized in electromagnetic launcher analyses. In the launcher 
analyses, however, a relatively short time period --a fraction of a second-- is considered 
because of the hypervelocity of the projectile. In addition, capacitor banks or a pulsed 
generator is used as the power source for electromagnetic launchers. The dynamic 
circuit theory used for the computation of a continuous sheet suspension was discussed 
by a Canadian maglev group (refs. 7 and 8). In this group's model, the dynamic circuit 
theory was combined with a harmonic analysis. The superconducting magnets aboard 
the vehicle were replaced by a current sheet that was expressed in terms of a Fourier 
Series. A d-q transformation, which is usually used to  transform a rotating machine 
into a stationary primitive machine, was applied to the direction of motion for all 
harmonics. The performance of the continuous sheet guideway was determined on the 
basis of the circuit solutions in combination with the superposition theorem. 

Although the dynamic circuit theory was discussed with respect to  other 
applications in several papers, the applications of the theory to various maglev 
suspension and propulsion systems have not been discussed. In particular, using 
dynamic circuit theory to simulate the performance of a complete maglev system has 
not been discussed in previous papers. In this paper, we apply the dynamic circuit 
theory to  several electrodynamic suspension systems, including a loop-shaped coil 
suspension, a figure-eight-shaped null-flux suspension, and a continuous sheet 
suspension. We also emphasize a direct computation of magnetic forces without using 
Fourier and d-q transformations or past computation processing. The paper provides 
mathematical models for various suspension systems and discusses their similarities 
and differences in using dynamic circuit theory. These models can be used for the 
development of computer codes that are necessary for the design, analysis, and 

The dynamic circuit theory, also called general machinery theory or  mesh-matrix 
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simulation of large-scale maglev systems. Indeed, work on the development of 
computer simulation codes that account for both the electrodynamics and mechanical 
dynamics of maglev vehicles interacting with guideways is currently in progress a t  
Argonne. 

The paper consists of seven parts, The second part introduces the dynamic circuit 
theory. The third part discusses the computation of magnetic forces for loop-shaped coil 
suspensions. The fourth part deals with the computation of figure-eight-shaped null- 
flux coil suspension systems. The magnetic forces in the continuous sheet-type 
suspension system are considered in the fifth part. Numerical examples are given in 
the sixth section, and conclusions are presented at the end of the paper. 

GENERAL MODEL 

Power Conservation and Forces in a Maglev System 

A maglev system can be represented by the dynamic circuit model in which the 
system energy, power, and forces, as well as other quantities, are expressed in terms of 
their circuit parameters. Those circuit parameters, in general, are functions of time 
and space. Thus, the dynamic and transient performance of a maglev system can be 
determined on the basis of the solution of the dynamic circuit model. 

In general, we may consider a maglev system in which m vehicle coils or 
conductors interact with n guideway coils or conductors t o  produce either levitation and 
guidance forces, or propulsion forces. All of these coils are assumed to  be connected to 
individual power sources. Thus, the superconducting coils aboard the vehicle can be 
represented by letting the terminal voltages and resistances of the vehicle coils vanish, 
the passive guideway conductors can be represented by letting their terminal voltage 
vanish, and the propulsion system can be represented by connecting a polyphase power 
source to the guideway stator coils. If we let [i] and [e] be column (m+n) matrices made 
up of the individual currents and voltages associated with the vehicle and guideway 
coils or conductors, respectively, [L] be a square (m+n) x (m+n) matrix, each element of 
which represents either the self-inductances of the vehicle and guideway coils (or 
mutual inductance between the vehicle coils and guideway coils) and [R] be a diagonal 
(m+n elements) matrix composed of the individual vehicle coil and guideway coil 
resistances, then we can write the system voltage equations in matrix form, based on 
Kirchhoffs voltage law, as follows: 

We may assume that a maglev vehicle involves three-dimensional motions caused by the 
change of the mutual inductances between the vehicle and guideway coils in three 
dimensions. Letting v,, vy, and v, be the velocities of the vehicle in the x, y, and z 
directions respectively, we can rewrite Eq. (1) in terms of a speed voltage, a voltage 
induced due to a relative motion, as 



where [GJ = d[L]/dx, [Gy] = d[L]/dy, and [G,] = d[L]/dz. The total time-dependent power 
input to  a maglev system is 

P =[ iIT[ e ]  = [ i IT[ R I[ i ] +[ i IT[ L]d[  i ]  
dt 

+ vx[ i lT[Gx1[ i 1 + vy[ i lTIGyl[ i 1 + vz[ i I T G d  i 1 
where the superscript T stands for the matrix transpose. Since 

A( [ i IT[ L ] [ i 1) = px[ i IT[Gx][ i ] + &[ i IT[G,][ i ] 

++J iIT[G.J[ i ]  +[ ilT[ LIB[ i ]  
2 dt 

dt 
Eq. (3) can be rewritten as follows 

P =[ iIT[ e ]  = [ iIT[ R I[ i ] +- d l  (- [ iIT[ L I[ i ] )  
dt 2 

(3) 

(4) 

Equation (5) shows the power conservation of a maglev system. We note in Eq. (5) that 
the term on the left represents the total electrical power input to the system, which may 
include the power from a stationary power system and the power from the batteries 
aboard the vehicle. The first term on the right-hand side represents the dissipated 
power of the system, which may include the power losses both in the guideway coils and 
in the vehicle coils if superconducting magnets are not used aboard the vehicle. The 
second term represents the time rate of change of the magnetic energy stored in the 
system, and the last three terms on the right-hand side represent the converted 
mechanical power which results in the three-dimensional motion of the vehicle. 
Finally, the three force components F,, Fy, and Fy acting on the vehicle can be obtained 
from Eq. (5) by dividing the terms of the converted mechanical power by their 
corresponding velocity components v,, vy, and v,, yielding the following: 

F, = L [ i IT[Gx][ i ] (6) 2 

F, = [ i IT[Gy][ i ] (7) 

Fz = 1 [ i JT[GZ][ i J (8) 2 

According to the conventional notation, we may refer to  F, as the force in the direction of 
motion, which could be a propulsion force or a magnetic drag force, depending on the 
applications of the model, Fy in the horizontal direction, which could be a guidance or a 
horizontal perturbation force, and F, in the vertical direction, which represents a 
levitation or a vertical perturbation force. 

When the model is used to determine the magnetic drag of an EDS maglev 
system, the input electrical power term in the right-hand side of Eq. (5) is zero. 
Assuming a vehicle moving in the x direction with a speed vx and neglecting the 

924 



induced voltage due to the horizontal and vertical perturbation, we obtain a new power 
conservation equation from Eq. (5) as follows: 

In this case, the third term on the right-hand side represents the mechanical power 
required by the system t o  overcome the magnetic drag power of the system. Thus, the 
longitudinal component of the magnetic force of a maglev system can be obtained from 
Eq. (9) as follows: 

F, [ i IT[G,][ i ] = - 1 [ iIT[ R][ i ] -&(i [ i IT[ L][  i 1)  (10) 2 VX 

Equation (10) shows that the longitudinal component of the magnetic force consists of 
two parts. The first part is a dissipative term that represents a drag due t o  the ohmic 
loss, and the second part is due to the change of the magnetic energy stored. The second 
part of the force is considered to be a nondissipative o r  conservative force that may be 
negative or  positive, depending on the change of the magnetic energy stored in the 
system in the direction of motion. 

Transformation for the Coil Connections 

A maglev system usually involves many coils that may logically be connected in 
several different groups to perform different functions, such as levitation, guidance, and 
propulsion. For instance, the figure-eight-shaped null-flux coil guideway can be viewed 
as two loop-shaped coils connected in opposite direction, and the propulsion coils, in 
general, are connected into three groups t o  form three-phase armature windings. 
Other maglev systems are expected t o  have even more complicated coil connections in 
order to  perform an integrated maglev function. The dynamic circuit model can be 
applied to many maglev systems, if the transformation of the coil connections are 
considered. 

General transformations for solving electrical machine problems were discussed 
by Morgan (ref 1). The transformation for the coil connections is particularly usefid for 
the maglev simulation and analysis on the basis of the dynamic circuit model. Since the 
vehicle and guideway coils are usually connected in different configurations that may 
need different transformations, it is necessary t o  partition all the matrices by rows or 
columns to form submatrices. Thus, the previously defined current and voltage 
matrices expressed in terms of submatrices are 

t i l  =[;;I 
and 

[ e l = [  E, E V ]  
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where I,, I, and E,, E,, are the current and voltage 
guideway coils, respectively. The subscripts v and g 
respectively. The inductance matrix becomes 

Lv Lv, 
[ L ] = [  E,, L, ] 

submatrices of the vehicle coils and 
stand for the vehicle and guideway, 

where the L, and L, are the inductance submatrices of the vehicle coils and guideway 
coils, respectively. L,,=L, are the submatrices that represent the coupling between the 
vehicle coils and guideway coils. They are the most important part of the system 
because all magnetic forces are generated from this coupling. Similarly, the resistance 
matrix in the system may be partitioned into submatrices & and R, as follows: 

The 
vehicle. 

[ R ] = [  R v  ] 
0 R, 

becomes a zero submatrix when superconducting coils are used aboard the 
One can define a transformation matrix [TI as 

where T, and T, are the transformation submatrices for the vehicle coils and the 
guideway coils, respectively, which depend on the connection of the coils. T, may be a 
unit submatrix if the transformation is only applied to the guideway coils. By 
introducing the prime quantities as a new system after transformation, one can obtain, 
on the basis of power invariance for the current 

[ I l = C T l [ I l '  

[ v I' = [ T IT [ v 1 
and for the voltage 

The inductance matrix and its derivative matrix of the new system are as follows: 

[ L l 1 = [ T l T [ L 1  [ T I  

[ G l 1 = [ T l T t G 1  [ T I  

[ R l ' = r T I T I R I I T l  

By substituting the prime quantities in Eqs. (16) to  (20) into Eqs. (1) to (lo), one can obtain 
the power conservation and force equations for the new system. Typical examples for 
the use of the transformation will be discussed in the following sections. 
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COMPUTATION OF THE LOOP-SHAPED COIL SUSPENSION 

Considerable attention has been given to suspension schemes in which the 
superconducting coils are levitated above a loop-shaped coil guideway, as shown in Fig. 
1. The coil guideway may be superior t o  the continuous sheet guideway because of the 
former's relatively low magnetic drag force (ref. 9). The loop-shaped coil guideway, 
however, produces force pulsations that do not arise in the continuous-sheet guideway. 
A steady-state analysis of the loop-shaped coil guideway was performed by Hoppie et al. 
(ref. 10) on the basis of the Fourier transform method in combination with steady-state 
circuit analysis. The dynamic circuit model is well suited for the determination of the 
dynamic performance of the loop-shaped coil guideway. 

When the dynamic circuit theory is applied to the loop-shaped coil guideway, the 
model becomes relatively simple, because the currents in the superconducting coils 
aboard the vehicle are usually fixed; the voltages across the individual loop coils are 
zero, and a connection transformation for the guideway coils is not needed. Neglecting 
vertical and horizontal perturbations and assuming m superconducting coils moving 
above n loop-shaped guideway coils, we obtain a system of voltage equations for the loop- 
shaped coil guideway from Eq. (2) as 

. 

... 

L11 L12 ... L1n 
L21 L22 L2n 

L,1 . . . . . .  Ln, 
. . . . . . . . . . . .  

. . . . . . . . .  

. . . . . .  Gn,-,,][;i] 

where Ij (j=l,m) are the currents in superconducting coils aboard the vehicle, Lij (i=l,n 
and j=l,n) is the mutual inductance between the ith and jth loop coils on the guideway, 
and & (i=l,n) is the resistance of the ith loop coil. Both Lij and Ri are constant if the 
dimensions of the loop coil are selected. Gij (i=l,n and j=l,m) is the derivative with 
respect to x of the mutual inductance between the ith loop coil on the guideway and the jth 
superconducting coil aboard the vehicle and is a function of space and time. The 
unknowns in Eq. (21) are the currents of the loop coils in the guideway. The formulas 
used to evaluate self-inductances and the mutual inductances can be obtained (refs.9 
and 11) and the derivative of the mutual inductances can be determined numerically 
from the mutual inductances. Equation (21) cannot be solved directly because matrix 
[GI in the right-hand side is a function of time and position. One simple 
approach is to solve Eq. (21) at successive time steps with step size At.  Thus, for given 
initial conditions and determined matrix [GI, one can solve Eq. (21) as a set of linear 
algebraic equations for the unknowns dij/dt (j=l,n), rather than solving the linear 
differential equations for ij. The currents at time t are found by adding dij/dt A t  to  the 
previous currents, i.e. 
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Iterations between Eq. (21) and (22) will determine the currents in all loop coils as a 
function of time. The currents as a function of position are also obtained from the above 
results because of the relation Ax=v, At. After finding currents in the loop coils, we are 
able to  determine the longitudinal, the lateral guidance, and the vertical suspension 
forces of the system as functions of time and displacement from Eq. (6) t o  (8): 

i j  

n m  
Fy = i; Gy,ijIj 

i j  

n m  
F, = C i; G , , ~ ~ I ~  

The three components of the magnetic force given by Eq. (23) to (25) include force 
pulsations, which depend on the geometry and the material characteristics of the loop 
coils. Time-average forces can be found from Eq. (23) to (25) by taking the time averages 
over any desired period. In practice, it is a reasonably good approximation to  consider 
only the mutual inductances between the several coils on the left and right of a given 
coil. Thus, Eqs. (23) to  (25), and all the mutual inductances and their derivative 
matrices discussed previously, are simplified. Finally, the total power dissipated in the 
loop coils as functions of time or position is 

Similarly, one can determine the time average power from Eq. (26) by taking its time 
average over any pulsation period. 

COMPUTATION OF THE FIGURE-EIGHT-SHAPED 
NULL-FLUX COIL SUSPENSION 

The figure-eight-shaped null-flux coil suspension and guidance system shown in 
Fig. 2 is a variation of the null-flux suspension concept invented by J. Powell and G. 
Danby in the late 1960s. It is currently being incorporated into the new Japanese maglev 
systemla and has become a very important maglev concept. The major features are that 
it can provide both suspension and guidance forces with a relatively small magnetic 
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drag. In particular, it can provide zero magnetic drag at the null-flux equilibrium point 
and can be very helpful in starting a maglev vehicle. The Japanese have succeeded in 
designing and testing several versions of the electrical dynamic suspension (EDS) 
maglev system based on this null-flux suspension concept. 

literatures (refs. 12 and 13) was based on field and harmonic analyses. In this section, 
we apply dynamic circuit theory t o  the figure-eight-shaped null-flux coil suspension 
system. As mentioned before, one of the advantages of the approach is that it can 
predict transient and dynamic performance based on a simple and direct solution. For 
general purposes, we assume that m superconducting coils interact with n figure-eight- 
shaped null-flux coils as shown in Fig. 3 and that the n null-flux coils comprise 2n 
loops. Assuming the currents in the superconducting coils are fixed and neglecting the 
speed voltage terms resulting from the motions in the y-z plane, we can write general 
voltage equations in matrix form for the Zn-loop system. Since the currents in the upper 
loops equal those in the lower loop but have the opposite spatial orientation, the system 
has only n-unknown currents, and we can apply a connection transformation to the 
system as discussed previously. Using Eq. (16) we can determine the transformation 
submatrix for the guideway coils T, from the current relations, ij = -in+j (j=l,n) as 
follows: 

The computation of figure-eight-shaped null-flux suspensions discussed in the 

-1 

.. -l .. -,I 
Since the transformation is only applied to  the guideway null-flux coils, the 
transformation submatrix for the vehicle coils T, is a unit matrix. Using Eqs. (21, (15) to 
(201, and Eq. (271, we obtain the voltage equations in matrix form for the null-flux coil 
system after transformation as 

L12 

L22 

... 

... 
... 
... 

6 2 1  (322 G2m 
- vx . . . . . . . . . . . .  

1 Ghl . . . . . .  Gim 

where i j  (j=l,n) is the current in the jth null-flux coil and the prime is omitted because 
the currents in a an-loop system are equal to that in an n-null-flux-coil system. The Ij 
(j=l,m) are the currents in the superconducting coils. The individual elements in the 
coefficient matrices after transformation are given as follows: 
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Rj = Rj + Rn+j j = l,n 

i = 1,n and j = 1,n 

Gij = Gij - Gn+i,j i = l ,n and j = 1,m 

(30) 

where the prime quantities in the left-hand side represent the lumped-circuit 

parameters of the null-flux coil system. R; is the resistance of the jth null-flux coil, L'ij is 

the mutual inductance between the ith and jth null-flux coils, and ~l~ is the derivative of 
the mutual inductance between the ith null-flux coil  and the jth superconducting coil. 
The right-hand side represents the parameters before transformation. Thus, Rj and Rn+j 
are the resistances in the upper and lower loops of the jth null-flux coil respectively, Lij (i 
= 1,2n and j = 1,211) is the self or mutual inductances between the individual loop coils, 
and Gij and Gn+i,j are the derivatives of the mutual inductances between the upper and 
the lower loop of the ith null-flux coil and the jth superconducting coil respectively. If we 
assume all loops of the null-flux coil t o  be identical, Eqs. (29) and (30) can be simplified 
as follows: 

Ri =2€$=2R (32) 

Using Eqs. (31) t o  (33), we can rewrite Eq. (28) in terms of the individual loop-coil 
parameters as follows: 

R 
... 11"'1'1 ... ... ... ... . . . I -  

R 

Several important points should be noted in Eq. (34). First, the currents induced in the 
null-flux coils are due t o  the speed voltages in the right-hand side of Eq. (34). The speed 
voltages are given by the product of the vehicle speed v,, superconducting coil current Ij 
(.j=l,m), and the derivative of the mutual inductance between the moving vehicle coils 
and the stationary guideway coils. This means that the suspension force depends upon 
the product of the above three factors. Secondly, by comparing Eq. (34) with Eq. (21), one 
can show that the currents induced in the null-flux coil guideway are much smaller 
than that in the loop coil guideway for given superconducting coil currents and vehicle 
speeds. Equation Eq. (34) shows that for the best situation, (which assumes the 
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superconducting coils to  be far away from the null-flux equilibrium point, that is, 
L.->>L,+ij 1J and G p >  Gn+i$, the current induced in the null-flux coil guideway is only 
about one-half of that in the loop-shaped coil guideway because the speed voltage term in 
the right-hand side of Eq. (34) is about one-half of that of Eq. (21). From the view point of 
the lumped electric circuit parameters, the resistance and the self-inductance in each 
null-flux coil are two times larger than that in a single loop coil. In addition, the 
currents may be fiirther reduced due to the reversed connection between the upper and 
lower loop coils which would result in a negative contribution from their mutual 
inductance. Both factors are observed in Eq. (34). Thus, we can conclude that the 
suspension forces in the null-flux coil guideway are much smaller than that in the loop- 
shaped coil guideway. 

null-flux lift Fy, and the vertical guidance force F,, are obtained from Eqs. (6) to  (71, and 
(31) as follows: 

The three-dimensional magnetic forces, the longitudinal magnetic force F,, the 

Equations (35) to  (37) illustrate that all magnetic forces in the null-flux coil guideway are 
determined by the difference of the forces acting on the upper loop and the lower loop 
coils. All magnetic forces vanish at the null-flux equilibrium point, as expected. 

CONTINUOUS SHEET SUSPENSION 

A continuous sheet guideway is one of the basic levitation methods for 
electrodynamic suspension maglev systems. The repulsive levitation force is generated 
by the interaction between the superconducting coils aboard the vehicle and the eddy 
currents induced in the conducting sheet. The computation of lift and drag forces for a 
continuous sheet guideway is discussed in the literature (refs. 14 and 15). In particular, 
combining the Fourier transformation method with a numerical approach seems to be a 
powerfiil method. Most of these methods, however, neglect edge effects due to the finite 
width of the guideway and are based on steady state analyses. 

divides the plate or the sheet conductors into many zones as shown in Fig. 4, each of 
which carries a different current. The circuit parameters for every conducting zone are 
then determined, and the system of equations is formed. The number of conducting 
zones is determined by the need for accurate computation. When the current 
distribution is known by solving the system of equations, the performance of the system 
can be calculated. When the circuit parameters are evaluated on the basis of a finite 

When the dynamic circuit method is applied to a continuous sheet guideway, it 
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length of the conducting zone in the y direction, the edge effect of the guideway is taken 
into consideration. 

guideway which is divided into n conducting zones, we can write the voltage equations 
for the sheet guideway in matrix form as 

If we assume m superconducting magnets moving above a conducting sheet 

- - ... . . . . . . . . . . . .  ... ... 
. . . . . .  

G11 G12 e . .  G l m  
G21 G22 

G2m 11::1 . . . . . . . . . . . .  - vx 

where & and Lij (ij=l,n) are the resistances and inductances of the conducting zones, 
and Gij is the derivative of the mutual inductance between the ith conducting zone and 
the jth superconducting coil. In Eq. (38) a column voltage matrix [V,] appears which 
represents the unknown voltages across the finite width of the conducting sheet. We 
may call this a side-voltage which does not exist in either the loop-shaped coil guideway 
or the figure-eight-shaped coil guideway. To solve the currents induced in each 
conducting zone, two additional conditions must be imposed. First, the total current 
flowing in the conducting sheet must be zero. Second, side-voltages across all 
conducting zones must be equal, that is 

and 
i l +  i2 + i3 + . . . . .  + in-l + i n  = 0 

v,1= vs2 = . . . . .  = Vsn-l = v,, = v, 
Thus, Eqs. (38) t o  (40) involve n+l  equations. For given initial current conditions, we can 
solve the n+l equations as a set of coupled linear equations for n unknown current 
derivatives and one side-voltage V,. The currents in the conducting zones at time t are 
obtained by adding di/dt A t  to  the currents at t -At  as shown in Eq. (22). Continuous 
iterations will determine the currents in all the conducting zones as a function of time 
or displacement. Following the solution of these currents, we are able t o  find all 
magnetic forces acting on the superconducting coils as given by Eqs. ( 6 )  to  (8). In the 
continuous sheet guideway, F, is the longitudinal magnetic force, Fy is the lateral force 
due to  the edge effect in the finite width guideway, and F, is the repulsive suspension 
force. 

NUMERICAL EXAMPLES 

Several computer codes for different guideway options have been developed based 
on the model discussed in this paper. Numerical examples are given only on the figure- 
eight-shaped coil suspension because of the limited length of this paper. Table 1 shows 
the dimensions of a superconducting coil and the null-flux coils used as numerical 
examples. A computer simulation is performed on a single superconducting coil 
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moving above a null-flux coil guideway with a 20-cm equivalent air-gap, as shown in 
Fig. 2. The time-averaged null-flux lift, magnetic longitudinal force (which equals the 
magnetic drag force), and the horizontal guidance force are shown as functions of the 
vertical displacement in Fig. 5. This figure shows that, as expected, all time-averaged 
forces disappear at the null-flux equilibrium point, and that they are symmetrical about 
the axis y=O. Fig. 6 shows the time-averaged forces as a function of vehicle speed from 
which one can see that the lift-to-drag ratio is about 20 at a high speed, and that a drag 
peak appears at 20 m/s. This implies that the dimensions of the null-flux coils may be 
optimized; for instance, the resistance of the null-flux coil may be reduced. Two options 
may be considered for the reduction of the coil resistance: one is to  increase the cross- 
section of the aluminum coils, and the other is to use a copper conductor for the null- 
flux coil guideway. 

Force fluctuations associated with the null-flux coil guideway are shown in Fig. 7, 
which shows that all forces fluctuate around their average values. Typical fluctuations 
for the null-flux lift and the horizontal guidance forces are about 10%. The frequency of 
the fluctuations is determined by the vehicle speed divided by the average length of the 
null-flux coil. Thus, for v=67 d s  and a coil length of 0.55 m, the frequency is 122 Hz. 

Table 1 Dimensions of Superconducting Coils and Null-flux Coils 

Superconducting coil 
length 
width 
current 

Figure-eight-shaped null-flux coils 
length 
heighdoop 
gap between upper and lower loops 
gap between null-flux coil 
cross-section 
material 

Equivalent Air gap 

1.5 m 
0.5 m 
550 BA-T 

0.5 m 
0.35 m 
0.05 m 
0.05 m 
9 cm2 
aluminum 
20 cm 

CONCLUSION 

Dynamic circuit theory, as applied to the maglev problem, treats all magnetic 
forces acting between components of a maglev system as arising from changes in 
magnetic energy stored in that system. This paper shows that mathematical models 
based upon this theory can be readily constructed to represent moving vehicle magnets 
interacting with stationary conductor arrays distributed on a guideway. Models of three 
types of guideway conductors were considered in order to demonstrate the uti 
versatility of the approach. Very general expressions were given for the forces between 
vehicle and guideway components for all three types of guideway conductors. This 
showed that, in general, single-loop conductors provide larger lift force than null-flux 
loop conductors. Numerical results of computer codes based on the mathematical 
model of a null-flux loop guideway conductor array were also given. In conclusion, the 
dynamic circuit theory provides a powerful approach t o  analyzing complex and 
heretofore difficult to  handle problems involved in maglev system design. 
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Fig. 1 A Sketch of Loop-shaped Coil Suspension 

Fig. 2 A Sketch of Figure-Eight-Shaped Coil Suspension 
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Fig. 3 Dynamic Circuit Application t o  the Figure-Eight-Shaped 
Null-Flux Coil Suspension 

Finite Thickness and Finite Width 
Superconducting Coils Conducting Sheet 

Fig. 4 Dynamic Circuit Theory Application to the Finite Thickness 
and Finite Width Continuous Sheet Guideway 
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Fig. 5 Time-Averaged Null-Flux Lift, Magnetic Drag, and Horizontal Guidance 
Forces vs. Vertical Displacement with a Vehicle Speed of 67 m l s  
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Fig. 6 Time-Averaged Null-Flux Lift, Magnetic Drag, and Horizontal Guidance 
Forces vs. Vehicle Speed with 11-cm Vertical Offset 
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Fig. 7 Force Pulsations in Null-Flux Coil Suspension System 


