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ABSTRACT 

Design of rotor systems incorporating stable behavior is of great importance to 
manufacturers of high speed centrifugal machinery since destabilizing mechanisms (from 
bearings, seals, aerodynamic cross-coupling, noncolocation effects from magnetic bearings, etc.) 
increase with machine efficiency and power density. 
parameters (stiffness and damping coefficients or coefficients of the controller transfer function7 
is proposed, based on a numerical search in the parameter space. The feedback control law is 
based on a decentralized low-order controller structure, and the various design requirements 
are specified as constraints in the specification and parameter spaces. An algorithm is proposed 
for solving the problem as a sequence of constrained 'minimax' problems, with more and more 
constraints becoming active in each subsequent stage. This helps in moving the closed-loop 
eigenvalues into an acceptable region in the complex plane. The algorithm utilizes the method 
of feasible directions to solve the nonlinear constrained minimization problem at each stage. 
This methodology emphasizes the designer's interaction with the algorithm to generate 
acceptable designs by relaxing various constraints and changing initial guesses interactively. A 
design-oriented user interface is proposed to facilitate the interaction. 

A new method of designing bearin 

INTRODUCTION 

Many rotor systems currently in use tend to operate at supercritical speeds, where 
multiple bending modes are likely to be excited during operation. Under these circumstances, 
safe and reliable operation under external excitations and internal loadings caused by sudden 
changes in machine dynamics such as blade loss is warranted, along with reduction of rotor 
amplitude due to mass imbalance and prevention of rotor instability [ref. 11. Destabilizing 
mechanisms such as aerodynamic cross-couplings in turbomachinery , oil-film forces in journal 
bearings, seal forces, unsymmetric shafts, internal friction, and noncollocation effects in 
magnetic bearings are the known causes of instability in rotating machinery. 

Design of rotating machinery incorporating stable behavior is one of the primary goals of 
the designer, and has been the subject of ongoing research. Sudden loss of stability may lead to 
large and uncontrollable rotor amplitude relative to the casing, causing rubs and severe damage 
leading to machine failure. As such, a designer would like to know during the design process 
whether a rotor will run stable during its operation, and the size of the stability threshold for 
the endangered modes of vibration. Moreover, a knowledge of the effect of known parameter 
variations on the stability characteristics is deemed useful. Using the available design tools, it 
is the task of the designer to achieve an acceptable steady-state rotor response and also 
maintain a specified minimum level of stability. 

In recent years the development of magnetic bearings has enabled active control of 
rotor-bearing systems by suppressing the lateral vibration through feedback control. These 
bearings can be used either to replace oil-film bearings or in addition to them to provide 
enhanced vibration control and stability characteristics. Several studies have been made on the 
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control of synchronous vibration and stability of rotating machinery employing these bearings. 
However, unlike conventional oil-film bearings where there is relatively less flexibility in choice 
of the bearing parameters (due to their inherent interdependence) and the nature of the 
feedback control law (which is implicit in the dynamics of the structure-oil film interaction), 
magnetic bearings offer the designer enormous flexibility to choose the nature of the feedback 
control and the parameters that govern the law. However, this flexibility cannot be put to 
effective use due to the limited availability of practical and implementable feedback design 
methods to exploit the range of available bearing parameters. 

The goal of this paper is to bridge this gap and develop a practical and simple feedback 
control law for design of bearings for rotating machinery. A methodology has been developed 
based on a simple proportional derivative (PD) controller structure where the feedback control 
force is essentially a linear function of the "stiffness" and "damping" coefficients (related to the 
displacement and velocity of the shaft at the bearing location) and the objective is to find 
accept able values of these coefficients that satisfy given design specifications and constraints. 
The formulation is then expanded to design low-order dynamic controllers and find the 
controller parameters that satisfy the required design criteria. 

Research into control system design and optimization has been performed by numerous 
researchers, and has followed a number of separate paths depending on the final objective and 
methodology. Eigenvalue placement and eigenstructure assignment has been a particular area 
of interest, with many differing perspectives and techniques. However, a number of problems 
beset this method, namely 

I 

1 

i) the choice of a desirable eigenstructure is not obvious, 
ii) the inability to achieve such a structure by output feedback schemes, 
iii possible poor robustness, and 
iv 1 a lack of a control magnitude penalty. 

Controller design based on dynamic response optimization using a quadratic cost index to 
obtain an optimal control law is another alternative approach. Such optimization is classified 
under the title of linear quadratic regulator problem or LQR problem. A fair amount of 
research has been directed at this problem as applied to the control of mechanical structures, 
and simultaneous structural and control optimization. Recently, this method has been used to 
design controllers for rotor bearings systems [ref. 2,3]. A controller designed to minimize a 
weighted sum of the mean square output (system response) and mean square input (control 
forces), i.e., to minimize the performance index remedies many of the problems faced by 
eigenstructure assignment. Moreover, the availability of a closed-loop unique solution of the 
LQR problem via solution of the Ricatti equation is an attractive feature. The main problems 
of this method are 

i) the resulting controller requires access to the full set of plant states, or to a state 
observer, 
ii) the controller is of the same order as the model of the plant, which becomes difficult 
to design and implement for a structural system (e.g. a multi-level rotor-bearing 
system), 
iii actual design specifications must be translated into a choice of weighting matrices, 
iv 1 a state-observer based controller may have poor stability margins and be very 
sensitive to modeling errors and parameter variations, and 
v) the scalar quadratic cost function is often inadequate for the representation of certain 
design objectives. 

One approach to overcome some of the above mentioned problems has been the 
development of suboptimal low-order compensators (static or dynamic fixed-order) by 
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prespecifying the feedback controller structure but retaining the quadratic cost function 
adopted in LQR design. The design of such compensators, often called output feedback 
compensators since they attempt to find a control based on the system output directly involves 
a numerical parameter optimization of the controller structure [ref. 4-71. A general solution to 
the output feedback stabilization problem is not available, and consequently several numerical 
schemes have been developed. However, the main problems involved with low-order output 
feedback controller design has been 

i) existence of multiple local optimal encountered during minimization, 
ii) inability to characterize the stability margin properties directly into the problem, and 
iii) inadequacy of the scalar quadratic index to represent the different system 
performance objectives. 

DESIGN VIA PARAMETER OPTIMIZATION 

The objective of this paper is to develop a design procedure for a decentralized 
low-order controller for rotor-bearing systems to achieve certain specifications regarding the 
stability of the closed loop system. A low-order decentralized controller for rotor systems 
would consist of a bearing with simple dynamics, that is a simple relationship between the shaft 
displacement and the bearing force. Decentralized or local control is defined as a control 
mechanism where only local state information is available, and can be regarded as a particular 
form of constrained output feedback where certain elements of the feedback transfer matrix are 
constrained to be zero [ref. 8-12]. In the context of a rotor system, the essential features of 
such a concept are 

i) the force at the bearing is dependent only on the measurements at the sensor location 

ii) the relationship between the bearing force and the local measurements is a low-order 
transfer function. 

One of the simplest examples of such a scheme is selecting the "stiffness" and "damping" 
coefficients for a P D  controller in order to control rotor response and stability. 

The rotor system or the plant is represented as a second-order matrix differential 
equation, which is a fair approximation of the continuous system for modeling purposes if the 
number of degrees of freedom chosen to represent the plant is large enough. This can be readily . 
converted to a first-order or state-space form as 

~ = A ~ + B u  
y = c x  (1) 

For plants with high system order, a model reduction may be deemed necessary to improve the 
computational efficiency in subsequent numerical optimization, and also since the 
finite-element model is unable to represent the high frequency dynamic behavior and the 
bandwidth of the controller is limited by practical considerations. A reduced order model can 
be constructed by using the modal truncation method, dynamic condensation method, the 
singular perturbation method and the internal balancing method. The modal truncation 
method has been effectively used to produce reduced order plant models using both the 
undamped (free-free) modes and damped modes as basis vectors and is adopted for our 
research. 
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The magnetic bearings are represented as a low-order static or dynamic controller, the 
state-space description of which is given as 

- 
0 1 o . . .  0 -  ' 0  
0 0 1 ... 0 0 

B = :  

- 

C 
A =  

C 0 0 0 ... i 0 

-00 -P, -02 - * *  -&-I 1 
- - - 4  

C = A c x c + B c y  
u = C c x C + D C y  (2) 

In general, the order of the controller is chosen a priori to the design process. A lower bound 
on the controller order required to satisfy the design objectives is presently unavailable and 
needs further theoretical considerations. 

The state-space description of the closed loop system including the plant and the 
controller states is 

A +  BDcC BCc 

Dc cc = { [ ~  :] [~ :] [Bc A 1  

N 

f; = (Ao + B K C]? = A,, x 

(3) 

The problem has been converted to a static output feedback form, and the goal is to find the 
controller K to satisfy the specified design requirements. For the purpose of optimization, it is 
prudent to convert (Ac,Bc,Cc,Dc) to a canonical form that minimizes the number of free 
parameters. In this paper, we have adopted the controller canonical form, where each 
controller is represented as 

and the corresponding transfer function is 

G(s) = CC(sI - AC)-' Bc + D, 

(4) 

sn-2 + .  . . + a 1  S +  a. 

+ So 
n-2 ci sn-l + a 

s + Pn-1 s 

- n-1 - 

Sn-2+ . .  . + PIS+ Po n n-1 
+ Pn-2 
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The problem of finding the controller matrix K is now translated into finding the vector of 
design parameters 

4 Po Sol z = [ (xnvl . .  . c( (x p 1 0 n- l . . .  

for each controller, whkh satisfies the the closed-loop design criteria. 

The controller canonical form may not be the best suited for representing the transfer 
function, since it leads to numerical ill-conditioning of the augmented system matrix (AcL). A 
diagonal or Jordan canonical form with real 2 x 2 block representations of the complex 
eigenvalue pairs may be a more suitable alternative. 

One of the main issues of controller design is the specification of the objective function 
for minimization. Selection of an appropriate objective function based on stability of the 
closed-loop system is a primary aspect of this paper. General trend in control system design 
has been a minimization of the quadratic performance measure (LQR problem) based on 
weighted state and control cost. However, such an objective function does not give a direct 
handle on the closed-loop eigenvalue locations and the stability of the system. 

To overcome this limitation, we present performance measures and constraints defined 
in terms of the eigensolution of the closed-loop system. The performance index should ideally 
measure a weighted sum of the stability margins of the individual eigenvalues. This leads to 
the formulation of a nonlinear optimization problem and the feedback parameters will be 
obtained by numerical search over the parameter space. 

For rotor systems, stability is often measured in terms of the logarithmic decrement of 
the damped eigenvalues defined as Si = - ~~ where pi, wi are the real and imaginary parts of 
the ith damped mode. For most designs of rotor systems, it may suffice to have a minimum log 
decrement SL for modes below a certain lower cut-off frequency wL, and another value of log 
decrement Su for modes above another upper cut-off frequency Su, and a minimum SB(ui) for 
modes in between. Also, it may be prescribed that no damped eigenvalue may be within a 
specified envelope around the operating speed of the machine (typically 10% above and below 
the running speed). These requirements translate into moving the closed-loop eigenvalues into 
an acceptable region of the complex plane. Attention is focused upon the eigenvalues that are 
the farthest outside the acceptable region and control effort is spent trying to bring them into 
the acceptable region [ref. 131. Mathematically, the objective can be formulated as the 
minimization of an Acceptability Function A, which is only required to be continuous and 
differentiable (almost everywhere) and have a value zero in the acceptable region and positive 
everywhere else. 

W i  

min A(z) 

subject to the constraints gj(z)< 0 (6) 
where z = vector of design parameters 

The Acceptability Function is not a performance index. It merely indicates if a solution is 
acceptable or not, and can be chosen at will by the designer to facilitate the minimization. 
Controller design will proceed based on a numerical search in the design parameter space, and a 
reduction in the value of A will occur at every iteration unless a local minimum of A is reached. 
Thus, unless this occurs first, A will be eventually reduced to zero, yielding an acceptable 
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solution to the problem. Convergence to a local (nonzero) minimum of A would call for 
restarting the search from a new initial guess, or relax the constraints, or even a change of the 
acceptability function to get out of the local minimum. Repeated failure to reduce A to zero 
will indicate the absence of an acceptable solution for the designer specified values. 

The design problem requires the satisfaction of a set of specifications. Often, finding an 
accept able solution considering all the specifications simultaneously as constraints may become 
too costly from a computational point of view. This led to the idea of solving the design 
problem as a sequence of constrained minimization phases [ref. 141. The order in which these 
phases occur in the sequence depend on the designer, though the 'harder' or more important 
constraints are put in as the initial phases. For our case, the optimization proceeds in four 
phases, with each phase consisting of a constrained (or unconstrained) minimization problem. 

Phase I - Satisfaction of stability requirements 

, 

pi(") = ReXi(z) 5 0 where Xi = ith eigenvalue 

The optimization problem is 

Tm 1 
min c max [0,pi(z)] 

i = l  

subject to no constraints 

Phase I1 - Satisfaction of lower and upper bounds on the design parameters 

z. < 2. < z jlow - j - jup 

The optimization problem is 

r - 1  1 

subject to pi 5 0 Stability constraints 

Phase I11 - Satisfaction of acceptability region requirements 

fii(Z) 2 6. 
'spec 

The optimization problem is 

min { F max io, Si - 

subject to pi 5 0 

i = l  spec 
Stability constraints 

z. < z. < z Design parameter constraints jlow - J - jup 

(7) 

(9) 
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Phase IV - Satisfaction of operating speed requirements 

where w. = ith damped frequency wi 2 a,fl 1 
wi >_ aLfl fl = operating speed 

= ratios defining au' aL 
the operating speed envelope. 

The optimization problem is 

min i c min [(a,n - 
i = l  

subject to pi 5 0 Stability constraints 
Design parameter constraints 

q z )  2. si Acceptability region constraints 
spec 

Constrained numerical search schemes can be used to minimize the objective/acceptability 
function within each stage. Sequential unconstrained minimization techniques (SUMT) using 
penalty function, the method of feasible directions, or the generalized reduced gradient method 
may be used [ref. 15, 161. We have adopted the method of feasible directions as our numerical 
search strategy, which starts from a feasible point and proceeds by iteratively searching along 
feasible directions. If no constraints are violated, different met hods like conjugate gradient 
(Fletcher-Reeves) , variable metric (Davidson Fletcher Powell, Broyden Fletcher Goldfarb 
Shanno) or nongradient (Powell) may be employed within the feasible directions method. The 
objective and the constraint functions are evaluated at each iteration and within the 
unidimensional line search for finding a new estimate of the controller parameters, while the 
gradient information for the objective function and the 'active' or violated constraints is 
calculated at the end of each iteration. 

APPLICATION EXAMPLE 

The rotor system chosen to illustrate the design methodology is a uniform symmetric 
beam 50 inches in length, and 4 inches in diameter. The rotor has been modeled by 11 mass 
stations, and the order of the system is 44 (each mass station or node is associated with four 
degrees of freedom, two translational and two rotational). The rotor is supported at two ends 
by magnetic bearings represented as two low-order decentralized controllers Fig. (1). For this 
example, the controllers are implemented as second-order strictly proper transfer functions, 
with the displacement and velocity at the two ends as the outputs and the control forces at the 
bearing locations as the input. The initial guess for the transfer functions are 

1012s + 1014 
s + 10  + 1012=(ST lO515T i' 8.6603)}(s -7: 105(5 - i 8.6603) 

1 o q s  + 100 GI(s) = T----g--- 
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The initial design parameter vector consists of the numerator and denominator coefficients of 
the transfer functions. 

! 

zo = [io12 1014 106 1012 1012 1014 106 1 0 1 2 1 ~  

The polezero locations and the bode plot of the transfer function for this initial guess of the 
design parameters is shown in Fig. (2). The corresponding closed loop eigenvalues are listed 
in Table 1. 

I. 

11. 

111. 

IV. 

The specifications for the design are laid out as follows 

Stability of the system must be insured. This implies 

Re Xi(z) 5 0 or, pi 5 0 

Upper and lower bounds on the coefficients of the transfer function have been fixed. For 
this case, the requirements are 

1 5 Zj  5 1 x 1030 

The acceptability region for the logarithmic decrement S has been established 

A minimum log dec SL = 1.5 for modes below a lower cut-off frequency 
wL= 800 rad/sec. 
A minimum log dec Su = 0.01 for modes above an upper cut-off frequency 
wv = 30,000 rad/sec. 
A minimum SB(.i) given by a straight line interpolation between SL and Su for modes 
with frequency wL 5 wi 5 wu. 

No avoidance of operating speed envelope has been requested. 

The vector of design parameters is subjected to the optimization procedure as described 
in the previous section. A variable metric method (BFGS) is adopted, and the optimization 
terminated after 11 iterations, yielding the final design vector. 

z* = [1.266 x 1013 1.76877 x 1013 2.3968 x 106 4.9862 x 1010 I 1.266 x 1013 1.76877 x 1013 
1 

2.3968 x 106 4.9862 x 101olT 

Translated into the transfer function form, the resultant controllers are 

1 . 2 6 6  x 1013 s + 1.76877 x 1013 1.266 x 1013 G1(s)'rT 2.3968 x 1 n T q  4.9862 x 1010 = 
(sT2.3758 x 

It is to be noted that the symmetry is retained though it was not imposed explicitly during the 
optimization. The pole-zero locations and the bode plot of the transfer function for the 
resultant decentralized controller are shown in Fig. (3). Even though the structure of the bode 
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TABLE 1 

PHASE I11 Minimization of Acceptability Region Violation With Stability and Box Constraints 

E I GEN- REAL PART IMAG PART LOG ACCEPTAB I L ITY DIFFERENCE 
VALUE ( 1/SEC ) ( RAD/S 1 DECREMENT REQUIREMENT 
NO. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

-2.1705 

-8.1298 
-7.3796 

-5.06 1 3 
-3.663 1 
-2.3489 
-1.2859 
- .5496 
- .1330 

-6.3899 

-6.3471 

499978.2707 
499978.2707 

20.6084 
35.4201 

1757.6281 
4747.3 243 
9132.3508 
14826.847 1 
21 760.9279 
29791.4218 
38526.9425 
47027.6262 
5 571.5344 

8660 12.85 13 
866012.85 13 

.6617 
1.1335 

.0291 

.0098 

.0044 

.0021 

.0011 

.0005 

.0002 

.0001 

.oooo 
3.6275 
3.6275 

2.0000 
2.0000 
1.9347 
1.7310 
1.4321 
1.0441 
.5715 
.0242 
.0100 
.0100 
.0100 
.0100 
.0100 

1.3383 
$665 
1 .go57 
1.7212 
1.4278 
1.0419 
.5 704 
.0237 
.0098 
.0099 
.0100 
.oooo 
.oooo 

ACCEPTABILITY MINIMIZATION FN. = 8.92519436 

TABLE 2 

PHASE I11 Minimization of Acceptability Region Violation with Stability and Box Constraints 

EIGEN- 
VALUE 
NO. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

-1.3946 
-1.4032 

-244.36 05 
-986.1444 

-1991.3497 
-7441.7080 
-7789.6355 
-1370.6901 

-270.17 18 
-93.3636 
-26.8946 

-2375944.7970 
-2375986.9465 

-667.8307 

4.9641 

IMAG PART LOG ACCEPTABILITY DIFFERENCE 
(RAD/S) DECREMENT REQUIREMENT 

.oooo 

.oooo 
789.4629 

3383.5133 
8470.3625 
7350.6089 
7302.0838 

15194.6896 
22222.5295 
30097.9415 
38678.1632 
47084.2560 
53583.9048 

.oooo 

.oooo 

1.9448 
1.8313 
1.4772 
6.3611 
6.7027 
.5668 
.1888 
.0564 
.0152 
.0036 
.0006 

2.0000 
1.8239 
1.4773 
1.5536 
1.5569 
1.0190 
.5400 
.0100 
.0100 
.0100 
.0100 

.0552 

.oooo 
-0001 
.oooo 
.oooo 
.4522 
.3512 
.oooo 
.oooo 
.0064 
.0094 

ACCEPTABILITY MINIMIZATION FN. = 37453036 
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plots remains similar (essentially a PD type structure for the dynamic range of the plant), some 
loop shaping has occurred leading to an improved design. The corresponding closed-loop 
eigenvalues are listed in Table 2. The results indicate an appreciable improvement in meeting 
the specifications over the initial guess, though all the specifications have not been met fully. 

A design oriented user interface is extremely important for engineering design 
optimizations like these, and is currently under development. Ideally, the information at the 
end of each iteration process should be available graphically to the user, and control must be 
transferred to the user to enable him/her to changevarious programvariables. Fig. (4) shows the 
graphical display at the beginning of the design process, for the initial guess of the design 
vector. The bottom half of the screen shows the acceptability regions for the closed-loop 
eigenvalues in terms of logarithmic decrement and the real and imaginary parts of the 
eigenvalues. The top half displays the upper and lower bounds on the design parameters and 
their values at the initial guess. The corresponding display at the end of the optimization 
process is shown in Fig. (5)) clearly displaying the results of the particular optimization run. 

CONCLUSIONS 

A method has been presented for the design of low-order decentralized controllers for 
rotor systems by parameter optimization. The controller has been represented in terms of a 
control canonical form, to reduce the number of free parameters or design variables. Instead of 
minimizing a performance index, the method emphasizes satisfying a set of specifications laid 
down by the designer through a sequence of constrained minimization problems. The proposed 
methodology has been illustrated by means of an example, and a graphical user interface is 
currently being developed. Although the method shares the problems of other parameter 
optimization techniques such as providing a good initial guess and not guaranteeing a solution 
if one exists, the reduced complexity and flexibility of the controller structure and the ability to 
handle different design constraints directly make it a very viable alternative to other design 
methods. 
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Fig. 1. Rotor supported on two magnetic bearings (low-order decentralized controllers) 
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