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Abstract: 

The propagation of vibrational energy in bulk, torsional, 
and flexural modes, in electrically conducting media can 
undergo strong attenuation if subjected to high magnetic 
fields in certain spatial arrangements. The reasons for this 
are induced Eddy currents which are generated by the volume 
elements of the media moving transversally to the magnetic 
field at acoustic velocities. In magnetic fields achievable 
with superconductors, the non-conservative (dissipative) 
forces are comparable to the elastic and inertial forces for 
most metal~. Strong dissipation of vibrational energy in the 
form of heat takes place as a result. A simplified theory is 
presented based on engineering representations of 
electrodynamics, attenuation values for representative 
metals are calculated, and problems encountered in 
formulating a generalized theory based on electrodynamics of 
moving media are discussed. General applications as well as 
applications specific to maglev are discussed. 

Introduction: 

The interconnection of elastic and electromagnetic phenomena in 
media capable of supporting both, have with a few exceptions been 
only curiosities so far. Few applications have been developed so 
far, mainly because of the relative minuteness of the effects. 
The special cases of acoustic propagation and vibration in the 
presence of steady state magnetic fields, magneto-acoustics, 
however, did receive some attention and have been investigated on 
a few occasions. 

In 1968, LILLEY and CARMICHAEL1 at the University of Western 
Ontario, Canada, conducted laboratory experiments with standing 
elastic waves in a metal bar subjected to a magnetic field. The 
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investigators reported slight damping effects which depended on 
the magnitude as well as the gradient of the field. 

Later, in 1985, LEE2 at the Stanford University Department of 
Mechanical Engineering analyzed electromagnetic damping together 
with thermoelastic damping of structures. Strong dependence on 
structural and geometrical configurations was found, as one would 
expect. 

The major shortcoming in exploiting magneto-acoustic phenomena 
for practical applications was due to the limit of magnetic field 
strength which could be produced by practical means. This was 
exacerbated by the fact that the effects have a second order 
dependence on field strength, as will be shown later. There is 
always the possibility, of course, of using conventional (low 
temperature) superconducting technology to generate the required 
fields. The complexity of the cryogenic support systems and the 
cost of such systems could be justified only in the rarest of 
circumstances. 

Recent advances in the technology of high temperature 
superconductors, will render magneto-acoustic effects much more 
relevant in the future. This was first recognized by HORWATH3 in 
a paper presented to the 119th meeting of the Acoustical Society 
in May 1990. Magnetic fields of several Tesla and possibly tens 
of Tesla will soon be achievable with such high temperature 
superconducting materials at a low cryogenic overhead. Such 
materials have the further advantage of much higher critical 
fields and currents. Their only limitation at present is 
relatively low current densities. 

In the high magnetic fields achievable with superconductors the 
non-conservative or dissipative forces in electrically conducting 
elastic media will become comparable to the elastic and inertial 
forces. As a result of this it will be possible to achieve 
significant direct dissipation of acoustic energy in metals, for 
instance, for both bulk waves and flexural waves. This will 
provide means for damping on a scale difficult to achieve before, 
and thus open new regimes for applications. 

First order estimates of the damping effects will be presented in 
the following. The attenuation lengths of longitudinal waves in 
bulk materials subjected to high magnetic fields will be 
calculated. This will be followed by a similar determination of 
the transversal impedance component in electrically conducting 
plates, which are subjected to high magnetic fields. Only very 
simple special cases will be discussed, aimed mainly at 
introducing the concept. 
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Propagation of Longitudinal Waves in Bulk Material: 
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Figure 1 

Figure 1 depicts a section of an electrically conducting slab, 
which is penetrated by a homogeneous magnetic field B, at normal 
incidence. A pressure disturbance, periodic or aperiodic, is 
applied at one end and propagates along the z-axis, through the 
magnetic field region, causing motion of the slab material at 
acoustic velocities. This produces a voltage in the y-direction 
in the volume element 4xoyodz 

E = -d~/dt = -2yoBv ( 1 ) 

which in turn gives rise to a current in the same volume. 

I = E/R = -2axoBvdz ( 2 ) 

It is tacitly assumed here, for simplicity, that the current path 
is closed through the fringe regions outside the magnetic field 
with essentially zero resistance. The current flowing in this 
volume element of the slab experiences a Lorentz Force, which is 
counteracting the driving disturbance. 

(3 ) 
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From this the pressure is obtained as 

dp = dF/dA = dF/4xoyo = -ovB2dz (4 ) 

For elastic wave propagation in bulk material the pressure is 
related to the velocity by 

v = p/(c5E)1/2 

where c5 is the density and E the bulk modulus of the 
Using this relationship the differential equation is 
from equation (4) 

dp/p = -aB2dz/c5c 

The attenuation length thus follows as 

Za b = (c5E) 1 / 2 / aB2 

(5 ) 

material. 
obtained 

(6 ) 

( 7 ) 

The attenuation is a function of the usual material parameters, 
such as density, sound velocity, and electrical conductivity, as 
expected, and has an inverse square dependence on the magnetic 
field. 

Table 1 below presents the attenuation length calculated by the 
above methodology for different metals subjected to a magnetic 
field of 10 Tesla. 
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Material 

Aluminum 

Copper 

Steel 

ATTENUATION LENGTH FOR BULK WAVES 
IN VARIOUS METALS 

( Magnetic Field = 10 Tesla ) 

Electrical 
Conductivity 

[Ohn( 1 m- 1 ] 

3.77 X 10' 

5.85 X 10' 

Density 

2690 

8930 

7650 

Table 1 

Bulk 
Modulus 
[Nm- 2 ] 

7.18 X 1010 

1.23 X 1011 

2.12 X 101 
1 

Propagation of Torsional (Shear) Waves: 

T 

B F---.... z 

dz 
T 

Figure 2 

Attenuation 
Length 

[m] 

3.68 X 10- 3 

5.67 X 10. 3 

6.48 X 10- 2 

The calculations proceed in a similar fashion as in the above 
case. Figure 2 shows a section of an electrically conducting rod 
which is penetrated by an axial magnetic field B. A torque 
disturbance is applied to the rod at one end and propagates along 
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the longitudinal axis, producing a radial voltage in the annular 
volume element of the rod section 2nrdrdz 

E = -d~/dt = -Brwdr (8 ) 

The current in this volume element is 

I = E/R = -2nawBdz (9 ) 

The Lorentz force acting on this current element generates a 
counter torque, which per unit cross sectional area is 

dT = -owB2 dz (10) 

For torsional waves propagation this torque per unit area is 
related to the angular velocity by 

w = T / ( c5G ) 1 / 2 

where G is the shear modulus of the 
relationship together with equation 
equation follows 

material. 
(10) the 

(11) 

Using this 
differential 

(12) 

which yields the attenuation length for torsional waves 

Za t = (c5G) 1 / 2 / aB2 (13) 
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Again, as expected, the attenuation is a function of the same 
material parameters as above, and is inversely proportional to 
the square of the magnetic field. 

Table 2 lists attenuation lengths for torsional waves in 
different metals in a field of 10 Tesla. 

Material 

Aluminum 

Copper 

Steel 

ATTENUATION LENGTH FOR TORSIONAL WAVES 
IN VARIOUS METALS 

( Magnetic Field = 10 Tesla ) 

Electrical 
Conductivity 

[Ohm- 1 m- 1 ] 

3.77 X 107 

5.85 X 107 

6.21 X 10' 

Density 

2690 

8930 

7650 

Table 2 

Shear 
Modulus 
[Nm- 2 ] 

2.69 X 1010 

4.55 X 1010 

7.95 X 1011 

Transversal Damping Impedance in Plates: 

Attenuation 
Length 

[m] 

2.25 X 10- 3 

3.44 X 10- 3 

3.97 X 10- 2 

Flexural waves are more difficult to treat in this context 
because of their highly dispersive nature, which precludes the 
use of a simple relationship between pressure and velocity. A 
somewhat different approach is taken therefore, calculating a 
damping impedance rather than an attenuation length. 
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x 
B, grad B 
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Figure 3 

Figure 3 depicts a section of an electrically conducting plate 
is now subjected to an inhomogeneous magnetic field B, with a 
strong gradient grad B. Both field and gradient are perpendicular 
to the plate. It is further assumed that the field region is 
contained within a circle of the radius Ra. A pressure 
disturbance is applied from the opposite side of the plate, 
causing the plate material to move in the direction of the field 
gradient, with an acoustic velocity typical for a flexural 
vibration mode. Circular currents are induced in annular elements 
of the material with the volume 4nrxodr as a result of the 
changing magnetic flux caused by this motion. 

The voltage induced is obtained from Faraday's Law of Induction 
as 

E = -d~/dt = -JJ dB/dx dx/dt dA (14) 

or 

E = J J v. grad. B dA (15) 

The current element is obtained from Ohm's Law as 
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dI = Eaxodr/rrr (16) 

performing the integration in (15) and sUbstituting the result 
into this the current element becomes 

dI = arxodrvxgradxB (17) 

which allows determination of the Lorentz force element 

dF = 2 rrrdIl3y • (18) 

and by sUbstituting (17) into (18) and integrating, the total 
Lorentz force acting on the circular region is obtained as 

F = I2anx. r' v. B, • grad. B dr (19) 

which becomes 

F 2/3 orrx,. R. 3 V" I3y z grad. B (20) 

Finally, considering that the pressure p = F/A, and the 
transversal damping impedance Zt = p/v, the latter becomes 

Zt = 2 13 axo R .. By • gradx B (21 ) 

This transversal damping impedance is again a function of 
electrical conductivity, thickness of the plate, radius of the 
field region, and is proportional to the product of the magnetic 
field and its gradient. 
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Table 3 below presents the transversal damping impedances for 
the same materials. Assumed is a thickness of the plate of one 
centimeter, an active area of one square meter, and a magnetic 
field of 10 Tesla with a gradient of 10 Tesla per meter. For 
these conditions the damping impedances for metals are very high. 

TRANSVERSAL IMPEDANCE 
FOR VARIOUS METALS 

( Area = 1m2, Thickness 
Field = 10 T, Gradient 

Electrical 
Material Conductivity 

[Ohm- 1 m- 1 ] 

Aluminum 3.77 x 10' 

Copper 5.85 x 10' 

Steel 6.21 x 106 

Table 3 

= 10- 2 m, 
= 10Tm- 1 ) 

Attempts to Formulate a Generalized Theory: 

Transversal 
Impedance 
[Nm- 3 sec] 

7.09 X 106 

1.10 X 10' 

1.17 X 106 

The above considerations were based on very el7ment~ry 
electromagnetic theory, and furthermore made use of eng1neer1ng 
representations applied to very simple, special cases. It would 
be desirable to have a more rigorous and generalized theory, 
describing all possible interactions between electromagnetic 
fields and sound fields in electrically conducting media. In the 
attempt to construct such a theory it became immediately 
apparent, however, that it will be very complicated at best, if 
not entirely impossible to develop. The reasons for this are the 
following: 

(1) The theory would have to be based on the Electrodynamics of 
Moving Media, or Relativistic Electrodynamics. The Maxwell 



Equations, which are the cornerstone of most electrodynamic 
phenomena, do not apply in this case. They have no provision for 
moving media, and are hence not compatible with the description 
of the Lorentz Force, which is, the result of a moving conductor. 
Relativistic Electrodynamics have much more complicated 
formulations than the Maxwell Equations. 

(2) Electrodynamics, relativistic or not, in general deals with 
time variant, non-stationary phenomena, and therefore by 
necessity is represented in time domain. Acoustic and elastic 
phenomena, on the other hand, because of their stationary nature 
are better described in the spectral domain. This lack of very 
basic compatibility is another shortcoming. 

For the above reasons it is believed that investigations of even 
slightly more complicated geometries than discussed above will 
have to resort to numerical methods, based on engineering 
formulations of electromagnetic principles. Such approaches are 
useful and effective, but in the view of the author do not 
provide the same degree of insight in a general sense, and are 
also not as elegant from a physicists point of view. 

General Applications: 

Very interesting application possibilities will become practical 
when high magnetic fields generated with high temperature 
superconductors become routinely available. A few of such 
possibilities are outlined in the following: 

(1) Vibration Isolation: The most obvious is, of course, 
vibration isolation. Because of the short attenuation length in 
metals, it will be possible to dissipate energy directly in 
vibration mounts such as springs. This will mlnlmlze both 
transmitted vibrations to the foundation, as well as the buildup 
of vibrational amplitudes at the source. The vibrational energy 
will, of course, be dissipated as heat in the regions subjected 
to the magnetic field, and provisions for heat removal will be 
required. 

(2) Selective Mode Damping: In the most general case, the 
dissipation of acoustic energy will be anisotropic, depending on 
the relative orientations of the magnetic and acoustic vector 
variables. This characteristic can be exploited for the selective 
damping of vibration and propagation modes, and also for the 
suppression or enhancement of mode conversions. 

(3) Anechoic Structures: The impedance figures for plates 
indicate that it may be possible to match the characteristic 
impedance of water. Under such conditions, plates and other 
structures submerged in water may be rendered anechoic. 

(4) Suppressed Radiation: The same is true for vibrating plates 
radiating acoustic energy. It would be possible to change the 
impedance of such plates either locally, or globally, to suppress 



selected radiating modes, or possibly even vibration in its 
entirety. 

(5) Structural Hardening: Finally, it is foreseen that the 
response of plates to impinging transient pressure waves, such as 
shock waves, for example, could be altered significantly, 
providing much greater stiffness and resistance to such 
phenomena. 

Specific Applications to Magnetic Suspension: 

The utilization of the phenomena discussed to various magnetic 
suspension applications can result in considerable synergies 
particularly when very high magnetic fields are involved. 
Substantial damping forces can be obtained for various magnetic 
suspension applications if design configurations are chosen which 
enhance the discussed effects. 

One inc:easi~gly important system concept based on magnetic 
suspens~on ~s the magnetically levitated train, or maglev. 
Maglevs are subjected to vibrations induced by irregularities of 
the tracks, by fluctuations of the magnetic propulsion and 
levitation forces, and by various transient aerodynamic phenomena 
such as wind gusts, entry and exit of tunnels, and other passing 
maglev trains. The vibrations induced by these various sources 
will have to be attenuated in the interest of ride quality. 
Attenuation has to be accomplished mainly by the suspension, may 
it be the primary suspension (levitation), the secondary, or a 
combination of the two. Electromagnetic vibration damping is a 
natural choice for maglevs because of the high magnetic fields 
used for levitation. 

The values for damping impedances of plates presented in Table 2 
are comparable to the stiffnesses of electrodynamic (EDS) maglev 
suspensions. This type of maglev system also utilizes 
superconducting magnets for primary levitation. The magnetic 
fields are of sufficient magnitUde to allow the construction of 
simple and efficient electrodynamic vibration isolators using the 
same superconducting magnets which provide the primary 
levitation. 

Conclusions: 

It is envisioned that this area of magneto-acoustic interactions 
will play an important role in vibration damping in the future, 
leading to many interesting and important applications, including 
the ones outlined above. Practical means for generating the 
necessary magnetic fields are being developed at a rapid pace, 
since the discovery of high temperature superconducting 
materials. The fields of acoustics and structural vibrations will 
undoubtedly benefit from these developments, which are driven by 
a vast commercial potential encompassing all fields of electrical 
technologies. 
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