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SUMMARY 

H2 synthesis te~hniques are developed for a general multiple-input-multiple-output 
(MIMO) ~ystem subject to both stochastic and deterministic disturbances. The H2 
~ynthesIs. IS ~xtended by incorporati?n of anticipated disturbance power-spectral-density 
mform~tIOn mto .the controller-desIg? process, as well as by frequency weightings of 
g.eneral~zed coordI!lates and control mputs. The methodology is applied to a simple 
~mgle:-mput-multIpl~utput. (S~MO) ~roblem, analogous to the type of vibration 
IsolatIOn problem antIcIpated m mlcrogravlty research experiments. 

INTRODUCTION 

The vibration environment onboard current and planned manned orbiters requires 
isolation for microgravity science experiments. The disturbance frequencies are sufficiently 
low, and the attenuation requirements sufficiently great, so as to preclude a solely passive 
isolation system (ref. 1). 

Since the disturbances to be attenuated are three-dimensional (ref 2, p.2), the 
isolation actuator must be capable of acting over six degrees of freedom. The requisite 
multiple-degree-of-freedom (MDOF) controller is much more difficult to design than a 
single-degree-of-freedom (SDOF) controller, because the isolation system has many 
inputs (actuator forces) and outputs (measured displacements and accelerations). 
Multiple-input-multiple-output (MIMO) designs can be very susceptible to unmodeled 
cross-coupling between channels of input or output (ref. 3), a problem not encountered in 
SDOF design. The control forces used must therefore be properly coordinated if the 
controller's performance is to be sufficiently insensitive to unmodeled dynamics (Le., 
robust). The design of a robust MIMO control system requires the iterative use of 
synthesis and analysis tools, the former for controller design and the latter for system 
performance and stability evaluation (ref. 4). 

A particular vibration isolation problem may involve different kinds of undesirable 
outputs, such as excessive absolute accelerations and unacceptable relative displacements. 
Some of these undesired outputs may be more important than others, and the degree of 
undesirability may vary with direction or frequency. For example, rattlespace constraints 
may be highly directional. Or a crystal-growth experiment may be particularly sensitive 
to accelerations at certain frequencies (ref. 2, p. 7) or in certain directions. One of the 
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goals, then, must be to design a controller capable of minimizing selected plant outputs as 
dictated by these considerations. 

Plant outputs, however, cannot be minimized apart from consideration of the 
associated control costs, because any active control both consumes power and releases heat. 
Since both of these costs are of concern in a space environment, the control effort used 
should not be excessive. And at higher frequencies control effort should also be minimized 
in order to limit controller bandwidth for the sake of robustness concerns (ref. 5, p. 218). 

This paper describes a design procedure, known as extended H2 synthesis (ref. 5, p. 
267), for developing active isolation system controllers. A single-input-multiple--output 
design problem is then addressed using the presented procedure. 

BASIC PROBLEM AND SOLUTION 

Problem Statement 

We will use Linear Quadratic Gaussian (LQG) theory to design the MDOF 
controller. This theory has been extensively studied and ussed. LQG is chosen as a 
synthesis procedure since the quadratic performance index relates well to 
root-mean-square statistics and power spectral density. 

When linearized, the differential equations of motion of the plant can be 
representable in state-space form by the first order system of equations 

i: = AK + B!! + Edid + Es~ 
y = CK + D!! 
~ = Y + Mn 

where K is the state vector, y is the output vector, ~ is the measurement vector, u is the 
control vector, id is a known or measurable disturbance vector, and ~ and n are process
and sensor noise respectively. We begin by making a series of reasonable mathematical 
assumptions. Assume that not all states are accessible, so that rank C ~ dim K. Let the 
initial conditions on the state vector be K (0) = Ko; let Ko, ~, n, and id be independent and 
bounded; let Ko be Gaussian (ref. 6, p. 272); and let n and ~ be zero-mean white 
Gaussian, with cov[~(t),~( T)] = Vtb(t-T) and cov[n(t), n( T)] = V3b(t-T) (ref. 6, p. 272). 
Assume that {A,B} and {A,Es Vttj2} are stabilizable, where Vt = Vttj2 Vttj2* (the 
asterisk here means "conjugate transpose"); and that {C,A} is detectable (ref. 5, p. 226). 
Let Vt and V3 be positive semidefinite (PSD) and positive definite (PD), respectively. 

We choose a performance index of the form 

(2) 

where Wt is PSD and W3 is PD (ref. 6; pp. 272,276). "(511 is the expected-value operator, 
needed since the system is excited stochastically by Ws. The cost rate functional form 
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(with II lim {") is used to allow both for the white noise disturbance Ws and for the 
T ----+00 

non-dwindling disturbance fd. 

If Z(t) is defined by Z(t)= {~(T), a ~ T ~ t}; and if 11(t) = ~[t,Z(t),fd] defines the set 
of admissible controls (ref. 6, p. 272), where ~ is a vector operator that is linear in terms of 
its arguments; the basic problem objective is to find an admissible control function 11*(t) 
which minimizes J with respect to the set of admissible control functions 11(t). [The 
asterisk here indicates optimality, in the sense defined by Eqn. (2).] 

Problem Decomposition 

The basic problem, as stated in Eqns. (1) and (2), can be decomposed into two 
parallel subproblems, one stochastic and the other deterministic. Suppose that ~ = ~s + 
~d, where ~s is the portion of the system response due to disturbance ~, and where ~d is 
the portion of the response due to fd. Let Ys, Yd, ~s, ~d, Zs, Zd, 11s, and 11d be 
correspondingly defined. 

Then J = lim Tl JT {6([~I + ~I][Wl W2]{~S ++ ~d})} dt 
T--1OO a s d WI W !!.s !!.d 

2 3 

(3a) 

can be reduced to J = Js + Jd, where 

Js = lim Tl J T {6 ([~I + !!.I] [W 
1 

W2] {~uS})} dt 
T --100 aSs WI W _s 

2 3 

(3b) 

and 1 T( [WIW2]) J d = lim T J [~I + !!. I ] {~d} d t 
T --100 Odd WI W !!.d 

2 3 

(3c) 

The problem is now separable into a stochastic- and a deterministic subproblem, each of 
which has an analytical solution. The two subproblems are stated, and their solutions 
presented (without development) below. 

Statement: 

Given: 

Stochastic Subproblem and Solution 

~S = A ~s + B !!.s + Es w s 

Ys = C ~s + D!!.s (rank C ~ dim ~s) 

~s = Ys + M!!. 
{A,B} is stabilizable, {C,A 1 is detectable 
~s(O) = ~so is Gaussian with zero mean 

(4a) 

(4b) 

(4c) 
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~so, ws, and!! are independent and bounded 

such that cov~s(t), Ws(T)] = V1b(t-T) 

and cov[Q(t),!!( T)] = V3b(t-T) 

where V 1 is PSD and V 3 is PD 

Js = lim+-{6' fT j[5~][W1W2l{~S})dt} 
T-+oo 0 \ W' W !!s 

2 3 
where \"11 is PSD and W 3 is PD 

~s(t) = {~s(T), 0 ~ T ~ t}, !!s(t) = ~s[t,~s(t)] 
defines the set of admissible controls 

(4d) 
(4e) 

( 4f) 

(4g) 

Find: An admissible control function !!s*(t) which minimizes Js with respect 

to the admissible control functions !!s( t) 

Solution (See ref. 6, pp. 272-277; and ref. 7, ch. 11): 

!!s* (t) = -K ~s(t) (5a) 

Statement: 

Given: 

where ~s is an estimate of ~s using a Luenberger observer (ref. 7, pp. 

288-289) having observer gain matrix L 

K = Wi1 (B'P + W2') (5b) 

P is the unique PD solution to 

PA + A'P - (PB + W2) Wi
1

(PB + W2)' + W1 = 0 (5c) 
L = QC' (M V3 M,)-l (5d) 

Q is the unique PD solution to 

AQ + QA' - QC' (M V3M,)-lCQ + Es V1 E~ = 0 (5e) 

P exists if {A,B} is stabilizable and {C,A} is detectable 
or if the system is asymptotically stable 

Q exists if {A, Es Vl1j2} is stabilizable and {C,A} is detectable 
or if the system is asymptotically stable 

Deterministic Subproblem and Solution 

~d = A Kd + B !!d + Ed fd 

Yd = C ~d + D !!d (rank C ~ dim ~d) 

~d = Yd 
{A,B} is stabilizable, {C,A} is detectable 
~d(O) = ~dO 

(6a) 

(6b) 

(6c) 



~dO and fd are independent and bounded 

Jd = 1 i m T1 f T (~d!!d [W1 W2] {~d}) dt 
T-too 0 W2 W3 !!d 

(6d) 

where W1 is PSD and W3 is PD 
~d = {~d( T), 0 ~ T ~ t}, !!d(t) = ~d[t, Zd(t), fd] (6e) 

defines the set of admissible controls 

Find: An admissible control function !!d*(t) which minimizes Jd with respect to the 

set of admissible control functions !!d(t) 

Solution (refs. 8; 9; and 10, pp. 156-157): 

!!d* (t) = -K ~d - Wi1 B' f~ exp[-A'(t-T)] PEd fd(T) dT 

where K = Wi1 (B'P + W2) 
P is the unique PD solution to 

-1 
PA + A'P ~ (PB + W2) W 3 (PB + W2)' + W1 = 0 

P exists if {A,B} is stabilizable and {C,A} is detectable 
or if the system is asymptotically stable 

Combined Solution to Basic Problem 

(7a) 

(7b) 

(7c) 

When rank C < dim 2fd, an estimate Kd of 2fd must be used in the feedback. If one uses 
an asymptotic (i.e., Luenberger) observer, with gains L chosen to give an optimal solution 
to the stochastic subproblem, he can then combine the stochastic and deterministic 
subproblem solutions so as to use the same observer and regulator. This allows the optimal 
solution (feedback portion) to be realized physically. If such a choice is made, 

!!*(t) = u~(t) +!!~(t) = -K ~(t) _Wi1 B'f~ exp[-A'(t-T)] PEd fd(T)dT (8a) 

where ~ is an estimate of ~ using a Luenberger observer 

having observer gain matrix L 

K = Wi1 (B'P + W2') 
L = QC'(M V3 M,)-l 

P ,Q, and A are as defined previously 

(8b) 

(8c) 

If fs and!!. are correlated by 6 [fs(t), !!.(T)] = V2D(t-T), then the above solution has the 

modification (ref. 7, pp. 414--417) that 

L = (QC' + Es V2)(M V3M,)-1 (8d) 
where Q is the unique PD solution to 

AQ + QA' - QC'(M V3M,)-lCQ + Es\71E~ = 0 (8e) 
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PROBLEM EXTENSIONS 

Frequency Weighting 

(Sf) 

(Sg) 

Suppose now that it is desired to frequency weight the states ~ and the control!!. in 

the cost rate functional, so that the weightings vary with frequency (ref. 11). Let ~ be 

considered to be the input to a filter 1I1(s) of which 1~ is the output, and let 1I1(s) have a 

state-space representation defined by {A1,B1,Cl,Dd [i.e., 1I1(s) = C1(sI-A1)-IB1+ Dd. 

Then 

i1 = A1 ~1 + B1 ~ 
1~ = C1 ~1 + D1 ~ 

(9a) 

(9b) 
expresses 1~ in terms of ~, employing pseudostates ~1. Similarly, if!!. is considered to be the 

input to a filter if"3(S) of which 1!!. is the output, and if if"3(S) has a state-space 

representation defined by {A2,B2,C2,D2}, 1!!. can be expressed in terms of !!., employing 

pseudostates ~2: 

i2 = A2 ~2 + B2 !!. (lOa) 

1!!. = C2 ~2 + D2!!.2 (lOb) 

Suppose now that these frequency-weighted states (1~) and controls (ill) are further 
weighted by constant weighting matrices W1 and W2, respectively. The resulting state 
equations and performance index are as follows: 

where 
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~ = 1A x + 1B !!. + 1Ed!d + 1Es Ws 

y = 1C ~ + D !!. 

~=y+M!! 

1J = 6{1 im +- fT([~, !!.'1[lW11W2]{N}) dt} 
T-Ioo 0 1W21W3 -

(lIa) 

(lIb) 
(lIc) 

(lId) 

(lIe) 

(11f) 



'B ~ [g,] 
IC = [C 0 0] 

IW2 = [ g 1 
C2'W3D2 

1W 3 = [D2W 3D2] 

o 

o 
o 

Disturbance Accommodation 

(l1g) 

(l1h) 

(l1i) 

(l1j) 

(11k) 

(111) 

(11m) 

Suppose further that the stochastic disturbance is not Ws but !s, where !s is a 

stochastically modeled disturbance with power spectral density 
* Sf(W) = Sf 1/2 (jW)Sfl/2 (jw). Defining Hf(jW) by Sfl/2(jW) V1

1/ 2, one can consider Is to be 

the output of a filter Hf(S) excited by zero-mean white Gaussian noise Ws (ref. 12) with 

power VI (Le., covb!s(t), Ws(T)] = VI 8(t-T). 
In state-space form, 

such that 

k = As £.. + Ws 

!s = Cs(sI - As)-l 

( ) ( As)-l 
Hf s = Cs sI 

(12a) 

(12b) 

(12c) 

Incorporating these new pseudostates (~) into the state equations and performance index 
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yields 
• A 

~ = 2A ~ + 2B !!. + 2Ed!d + 2Es ws 

r = 2C ~ + D !!. 

~=r+M!! 

2J = 6 [1 im f JT(~, !!.,][lW1
IW2]{!}) dt] 

T-loo 0 lW~ lW 3 !!. 

-
where ~ = {r} 

A 0 0 Es Cs 

2A = BI Al 0 0 

0 0 A2 0 

0 0 0 As 

'B = r ~,l 
2C = [C 0 0 0] 

'Ed r ~dl 

'Es [~ 1 
D~WIDI D~WICI 

2W1 = 
C~WIDI C~WICI 

0 0 

0 0 
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0 0 

0 0 

C~W3C2 0 

0 0 

(13a) 

(13b) 

(13c) 

(13d) 

(13e) 

(13f) 

(13g) 

(13h) 

(13j) 

(13k) 



2W2 = 

o 
o 

o 

The solution to this problem has been given previously. 

SYNTHESIS MODEL 

(13m) 

(13n) 

The model given at the close of the previous section is the model from which the 
controller is synthesized. The synthesis involves the determination of observer gains Land 
regulator feedback gains K. Preview gains KFF can also be determined, if desired, to 

approximate the Duhamel integral term of the optimal control. One approach to 
determining these preview gains has been presented in reference 9. Further study of the 
determination and use of these gains is needed. 

ANALYSIS MODEL 

Once the controller has been selected, it must be connected to the actual plant and 
the resulting "analysis model" used to evaluate closed-loop-system performance and 
stability. For constant gain matrices K, L, and KFF the open loop transfer function from 

Y to UFB [=-K ~ is 

,JJL 2A-2BK-L2C L cnu y (s) = 1-----+---4 
-FB-

w here the form 

-K 

[~J~ 
[ClD] 

o 
(14a) 

indicates C(sI - A)-1 B + D. The closed loop transfer functions, respectively, from Fd and 

Fs to X, are 

A - BK Ed+BKFF 

dfL F (S) = I-L_C_2_A_-_2_B_K_-L_2_C-+_2 B_K_F_F----j 
X _d I 0 0 

A -BK 

and ~L F (s) = LC 2A-2BK-L2C 2BKFF 
- -s 

I o o 

(14b) 

(14c) 
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The return ratio matrices (ref. 4) at the Y(s) and U(s) nodes, respectively, for D == 

0, are 
A2_BK-L2C 0 L 

L2(S) = -BK A 0 (15a) 

0 -C 0 

2A--2BK-L2C LC 0 

Ll(S) = 0 A B (15b) 

K 0 0 

The corresponding return difference matrices and inverse return difference matrices (ref. 4) 
are as follows: 

2A--2BK-L2C 0 L 

I + L2(S) = -BK A 0 (15c) 

0 -C I 

2A--2BK-L2C LC 0 

I + Ll(S) = 0 A B (15d) 

K 0 I 

I + L21(s) = I + [K(sI - 2A + 2B K + L2C)-1L]-1[C(sI - A)-l B]-l (15e) 

1+ Ll1(s) = I + [C(sI - A)-l B]-l[K(sI - 2A + 2B K + L2C)-1L]-1 (15f) 

The singular values of these matrices can be used to evaluate system noise and disturbance 
attenuation, stability margins, and sensitivity (ref. 4). Iterative application of the 
synthesis- and analysis models can be used to produce the desired controller. 

EXAMPLE PROBLEM 

Suppose one wishes to develop a controller to isolate a space experiment of mass m 

and position x(t), from a unidirectional acceleration disturbance a(t). Assume that a wall 
having position d(t) acts on m through an umbilical with stiffness k and damping c. (See 
figure 1). Suppose further that rattlespace constraints require the transmissibility to be 

unity below 10-3 Hz, and that it is desired to attenuate the disturbance by at least two 
orders of magnitude between 0.05 and 10 Hz. Let a linear actuator, applying a force that 
varies with control current i, be connected between the wall and the experiment in parallel 
with the umbilical. 

For this problem, it is desirable at low frequencies to penalize the relative 
displacement of the experiment heavily, so that the experiment "tracks" the wall. At 
intermediate frequencies, however, the absolute acceleration of the experiment should be 
heavily penalized to accomplish the desired disturbance rejection. The state space model, 
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then, should have relative position x-d and absolute acceleration x as states, allowing them 
to be frequency-weighted in the performance index. 

The system equation of motion is 
.. ' , ..' 'k' c A IX 
X = -k(x-d)-c(x-d) - lXi, where k = -, c = -, and IX = -m m m 

In state-space form, the equations can be written as 

where Xi(t) = x(t) - d(t) 

X2(t) = x(t) - o(t) 

X3(S) = (S~~h) S2X(S), Wh high, 

so that X3(t)~ x(t) for W«Wh 

Frequency-weighting the states so that 

{:~:~:~} = r~% ~ ~s 1 {~:~:~} 
IX3(S) 0 1 (S+W~hS+W2) X3(S) 

(16a) 

(16b) 

(16c) 

(16d) 

(16e) 

(17a) 

(where Wi < W2) results in a performance index that penalizes Xl more highly at low 
frequencies and X3 more highly at intermediate frequencies. If the control is 
frequency-weighted so that 

IU(S) = ( ~4S ) U(s) [W4<Wh] , (17b) 
s W4 

at higher frequencies the control will be more heavily penalized. This is desirable both for 

the sake of robustness and since X3 approximates x only at frequencies sufficiently below 
Who Finally, let the input acceleration be considered to come from zero-mean Gaussian 

white noise filtered through +w f . 
S Wf 
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The resultant state equations are as indicated on page 8, where 

Assume that 

C1 = 0 0 0 
[

WJ 0 01 

o W2 0 

D1 = 0 1 0 
[

0 0 01 

and 

000 

A2 = -W4 
B2 = 1 
C2 = -w2 

4 
D2 = W4 
As =-we 
Bs = 1 
Cs = we 
Ds = 0 

cov ws(t), W2( Tl] = 1 ~ (t - T) 
cov n1(t), n1(T) = 0.001 s(t- T) 
cov n2(t), n2( T) = 0.001 Set - ,). 

(18a) 

(18b) 

(18c) 

(18d) 

Since A1 has a zero [lstl column, 2A will have a corresponding zero [4th] column. To make 
the frequency-weighted' system PC,2A} observable, obtain J (x-d) dt as a measured state 
(Le., the first pseudostate, Zl1) and modify 2C accordingly. Let the measurement noise 
associated with Zl1 be n3, such that 

Gain matrix W1 can be varied to "tune" the optimal control to give the most 

satisfactory results. The transmissiblity between a(t) and x(t) is given in figure 2. The 
control uses feedback (and observer) gains obtained from system parameters and 
weightings as indicated on the figure. Note that the low-frequency transmissibility is 
unity, as desired, and that for intermediate frequencies the transmissibility rolls off with a 
slope of -1. 
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If a different frequency-weighting of X3 is used, it is to be anticipated that the 
transmissibility curve will change as well. 

W2 S 

For lX3(S) = (S+Wl )2(S+W2J2 X3(S) (19) 

the resultant selected transmissibility curve is given in figure 3. The low-frequency 
transmissibility again, is unity; but now for the intermediate frequencies the 
transmissibility rolls off with a slope of -2, as expected. Adding another pole at Wi and at 
W2 to the X3(S) frequency weighting would further improve the intermediate-frequency 
roll-off. The present controller, however, meets the design specifications. 

If state frequency-weightings of lX1(S) = S~~3 Xl(S) (20a) 
w2 s 

and lX3(S) = (S+Wl )2(S+W2P X3(S) (20b) 

are used, the results (figure 4) are similar to those given previously in figure 3. Note that 
with this latter choice of frequency weighting however, (Le., without anylirigid body poles"), 
the frequency-weighted system PC,2A J is observable, without augmenting the actual plant 
output y as was previously necessary. Consequently this is the preferred control. 

DISCUSSION 

H2 synthesis, as the example problem indicates, provides a highly versatile 
loop-shaping tool. It is especially useful in controller development for SIMO and MIMO 
systems, where classical loop-shaping methods are most lacking. Once the designer has 
expressed the system equations in terms of states for which he has an intuitive feel, and of 
measurable outputs, the design process becomes relatively easy. He frequency weights (Le., 
filters) the states and control inputs according to his engineering experience and intuition, 
to indicate the relative importance of each as a function of frequency. Then he weights 
these frequency-weighted states and controls relatLre to each other. The H2 synthesis 
methodology automatically provides him with a set of regulator and observer gains that are 
optimal with respect to the chosen weightings, given a quadratic performance index. 
Known aspects of the input disturbances and sensor noise can be incorporated into the 
design as well. Singular value checks provide the ability to evaluate system robustness. 
With a few iterations, the skillful engineer can complete his design. Excellent computer 
software packages already exist to assist in the task. 

The frequency weighting tells the H2 synthesis machinery how much "cost" to place 
on a state or control input at any frequency, relative to its cost at other frequencies. If, for 
example, absolute acceleration is undesirable only in a particular frequency range, that is 
where it should be most heavily weighted. The subsequent weighting of the 
frequency-weighted states and control inputs tell the synthesis machinery how much cost 
to place on each frequency-weighted state or control relative to the others. 
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In the example problem changing the relative weighting between absolute 
acceleration and relative displacement caused the frequency range of unit transmissibility 
to vary. An increase in the sharpness of the bandpass filter, used in the acceleration 
frequency weighting, resulted in a corresponding increase in the rate of gain roll-off. 
Increasing the weighting of relative velocity added damping to the system, as expected; and 
adjusting the acceleration bandpass filter's lower pole location allowed fine tuning of the 
unit transmissibility upper frequency limit. Use of a high-pass filter for control weighting 
produced a control which responds favorably (Le., minimally) at higher frequencies, where 
the plant models typically are invalid. 

CONCLUDING REMARKS 

The extended H2 synthesis method has been developed and applied to a 
one-dimensional microgravity vibration isolation problem, for which it seems particularly 
well-suited. Research continues toward the application of H2 synthesis to the full 
six-degree-of-freedom isolation problem. 
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SYMBOLS AND ABBREVIATIONS 

Alphabetical Symbols 

System dynamic matrix 
System control input matrix 
Umbilical damping 
Systems State output matrix 
Control transmission matrix 
System disturbance input matrix 
Disturbance vector 
Stochastic-disturbance input filter 
Transfer function matrix 
Control current 
Identy matrix 
Square root of -1 
Performance index 
Control feedback gain matrix 
Observer gain matrix 
Experiment mass 
Sensor noise input matrix 
Sensor noise vector 
Zero matrix 
Algebraic Riccati Equation solution for regulator feedback gains 
Algebraic Riccati Equation solution for observer gains 
Laplace variable 
Stochastic-disturbance power-spectral-density matrix 
Time 
Control vector 
Covariance matrix 
White-noise disturbance vector 
Weighting matrix 
Actuator proportionality constant 
Admissible-control function 
Dirac delta function 
Expected-value operator 
Disturbance-accommodation pseudostates 
Circular frequency 
Laplace transform, indicated by context 

Closed loop 
Covariance 

Abbreviations 

Feedforward (preview) gain 
Multiple--degree-of-freedom 
Multiple-input-multiple-output 
Open loop 
Positive definite 
Positive semidefinite 
Single--degree-of-freedom 
Single-input-multiple-output 
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post subscript 0 
post subscript 1 

post subscript 2 

post subscript 3 

postsubscript d 
postsubscript f 
postsubscript s 
post superscript 1/2 
post superscript ' 
postsuperscript -1 
post superscript * 
underline 
overbar -

overhat ~ 

overtilde N 

presuperscript 1 

presuperscript 2 

Subscripts, Superscripts, and Diacritical Marks 

Value at time t=O 
With A,B,C,D,e: related to state-frequency weighting 

state-space description 
With L: return ratio matrix at control node 
With V: process noise covariance 
With w,W,'If": state (or pseudostate) weightings, applied 

subsequent to any frequency weighting 
With A,B,C,D,e: related to state-frequency-weighting 

state-space description 
With L: return ratio matrix at output node. 
With V,W: cross-weightings 
With V: measurement noise covariance 
With W, 'If": control weightings 
Related to deterministic disturbance 
Related to filter for stochastic disturbance 
Related to stochastic disturbance 
Square root or spectral factorization 
Transpose 
Inverse 
Optimum or conjugate transpose 
Vector 
With A: closed loop system dynamic matrix 

With x: augmented with frequency-weighting 
pseudostates _ 

Augmented with frequency-weighting- and 
disturbance-accommodation pseudostates 

Estimated or associated with cross-correlation 
With ~,X,!!, or U: frequency-weighted 
With other symbols: related to system augmented by 

frequency weighting 
Related to system augmented by frequency-weighting 

and disturbance-accommodation 
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FIGURE 1: Example-Problem Model 
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FIGURE 2: Transmissibility Plot for 1st Control Weighting 
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FIGURE 3: Transmissibility Plot for 2nd Control Weighting 
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