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This paper presents the results of a Phase II Small Business Innovation Research program 
sponsored by NASA Marshall Space Flight Center. Technology is developed for isolating 
acceleration sensitive "microgravity" experiments from structural vibrations of a spacecraft, such as 
Space Station. Two hardware articles were constructed, a six degree of freedom Lorentz force 
isolator, and a one degree of freedom low acceleration testbed capable of tests at typical 
experiment accelerations. 

PRESENTATION OVERVIEW 

o Microgravity experiment isolation requirements 
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The need for isolation of microgravity experiments has been established recently based on 
Spacelab measurements and modeling of experiment requirements. Low frequency accelerations, 
caused by air drag and gravity gradients, small and fall below experiment acceleration limits. High 
frequency vibrations, caused by rotating machinery, require isolation, but simple mechanical 
isolators are adequate. The difficult vibrations at moderate frequencies, caused by crew motion, 
require a combination of large stroke and relatively low crossover frequency that is best provided 
by active suspensions. Isolation above approximately 0.04 Hz is required. 
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EXPERIMENT REQUIREMENTS VS THE ENVIRONMENT 
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The precious plot shows the acceleration environment and limits. Given the 0.04 Hz 
maximum base following bandwidth from the previous plot, the required suspension stroke can be 
determined. This figure shows that a peak-to-peak actuator displacement of 2 cm is required for 
desired isolation. 
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Both attractive and Lorentz force actuators were considered for this application. Because 
of the large stroke requirement, the typical mass penalty of Lorentz force actuators did not exist. 
Many other advantages of Lorentz force actuation are beneficial in this application as listed below. 
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THE ADVANTAGES OF LORENTZ FORCE ACTUATORS 

(FORCE ex CURRENT TIMES FLUX DENSITY) 

o OPEN-LOOP STABILITY (FACILITATES NON-LINEAR CONTROLLERS) 

o INHERENT ZERO GRAVITY ISOLATION AT ZERO CURRENT 

o CAN ISOLATE TO LOWER FREQUENCIES THAN FERRO-ATTRACTIVE ACTUATORS 

o MECHANICAL SIMPLICITY FACILITATING SIX DOF DESIGNS 

o EASY INTEGRATION WITH STANDARD ELECTRONICS 

o EQUIVALENT MASS PER UNIT FORCE WITH ATTRACTIVE ACTUATORS DUE TO 
LARGE STROKE 

o SATURATION DOES NOT LIMIT FORCE LIKE ATTRACTIVE ACTUATORS 



The previous figures showed how the stroke, base following bandwidth, actuator bandwidth 
and force requirements were formulated, as summarized here. 

ISOLATOR FUNCTIONAL REQUIREMENTS 

o STROKE (X, Y, AND Z) 

o MAXIMUM BASE-FOLLOWING FREQUENCY 
(MAXIMIZE "FREE FLYING") 

o MINIMUM ACTUATOR BANDWIDTH 
(COUNTERBALANCE DIRECT FORCES) 

o FORCE FOR 500 KG EXPERIMENT 

±1 em 

4 X 10-2 Hz 

1 N 
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A prototype six degree of freedom (DOF) isolator was constructed that had the 
characteristics listed below. The width and depth were scaled approximately to typical orbiter 
locker size. Weight was reduced to some degree by aluminum construction, but further reductions 
are possible. The prototype force capability was sized for very large 500 kg experiments. This 
capacity could be reduced, giving a substantial mass savings. 
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SIX DOF ISOLATOR DESIGN 

FORCE 

DIMENSIONS: 
STROKE 

WIDTH AND DEPTH 

HEIGHT AT CENTER 

WEIGHT: 
SUSPENDED PLATFORM 

BASE STRUCTURE 

TOTAL 

ISOLATOR POWER: 
1 N Z AXIS 
1 N X OR Y AXIS 
(EXPER CG 15 CM UP) 

OPEN·LOOP ACTUATOR BW: 

4 N (EXCEEDS REQUIREMENTS) 

±1 CM 

45 CM 

8CM 

5.0 KG 

4.5 KG 

9.5 KG 

1W 

4W 

> 100 HZ 



The prototype suspension shown below has four actuators, supplying eight forces, and eight 
position sensors. Each of the four isolator sides is identical, which provides symmetry and reduces 
controller complexity. Four Lorentz force actuators in the center of each side produce vertical and 
tangential forces. Two mounting plates are provided, one for the experiment on top, and the 
second for Space Station attachment below. Eddy current position sensors measure the vertical and 
tangential position at each corner. 

SATCON SIX OOF MAGNETIC SUSPENSION 
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TANGENTIAL 
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The actuator shown below has two permanent magnets that produce flux in the central air 
gap, where the coils cross. The flux returns through the four posts at the corners of the mounting 
plates. ilL" shaped coil mounts comprised of separate horizontal and vertical coils are laced through 
the gap. The return current returns outside the gap. The force constant is 1 Newton per ampere 
and the coil resistance is 9 ohms. Force capacity depends entirely on the duty cycle because the 
actuators are heat limited. 

228 

ONE OF THE SIX DOF ISOLATOR ACTUATORS 
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This top view of the isolator shows the upper mounting plate surrounded by the position 
sensors and circular targets, and the actuators on the center of each side. 

THE COMPLETED SIX-DOF ISOLATOR 
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A photograph of one of the actuators is shown below. The crossing point of the coils IS 
visible in the center of the gap, between the permanent magnets. One of the aluminum foil eddy 
current sensor targets is also shown. 

AN ACTUATOR INSTALLED ON THE SIX-DOF ISOLATOR 
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These plots show experimental data for initial condition responses of roll of the suspended 
platform. A long, soft spring was used to unload the gravity force and give a nominally centered 
coil position within the gap. The top two plots are concurrent traces of the x axis and y axis roll 
motions (cf> and tIr). The second plot shows that the roll axes are decoupled by the controller. Good 
damping characteristics are also exhibited. 
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The second article of hardware constructed is a one degree of freedom testbed to simulate 
on orbit accelerations and test controllers. The figure below shows an integrated Lorentz force 
motor / air slide on the left, which produces expected Space Station accelerations. On the right 
is another air slide supported by two air boxes, which simulates the floating experiment mass. The 
relative position of the "experiment" stage and the "Space Station" stage is controlled to maximize 
isolation in one DOF while preventing "bottoming out" of the central isolation actuator. This 
apparatus is useful for testing nonlinear controllers and determining the effect of signal noise levels 
throughout the control system. 
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ONE DEGREE OF FREEDOM TESTBED 
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The single digit microgravity background accelerations were produced using noncontacting 
actuators, sensors and mechanical suspensions where possible. The only connection to the sensitive 
Space Station stage are several thirty four gage wires carrying the accelerometer power and signals. 

ONE DOF TESTBED 

o INPUT STAGE SIMULATES SPACE STATION VIBRATIONS. 

o EXPERIMENT STAGE IS ISOLATED BY LINEAR ACTUATOR IN CENTER. 

o EACH STAGE HAS POSITION AND ACCELERATION FEEDBACK. 

o SIMULATE TYPICAL SPACE ACCELERATIONS AND SIGNAL LEVELS: 
IMP. FOR NONLINEAR CONTROL TESTS, SENSOR AND ACTUATOR TESTS. 

o NONCONTACTING HARDWARE: 
- AIR SLIDES: ACCURATE SPACE STATION ACCELERATION REPLICATION 

W/O STICTION AND SENSITIVE ISOLATION EVALUATION 

- NONCONTACTING POSITION SENSORS 

- NONCONTACTING INPUT MOTOR AND ISOLATION ACTUATOR 

- AIR LINES ON NONMOVING PART 

- ONLY ACCELEROMETER LEADS CONNECT TO EXPERIMENT 

o VERY STIFF STRUCTURE 
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This figure shows the one DOF testbed mounted on the granite surface plate. The 
accelerometers mounted on top of each stage are visible. One of the two 0.12 J..I.ffi resolution 
differential micrometers is shown on the right. 

ONE DOF TESTBED 

ORIGINAL PAGE 
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The integrated Lorentz force motor / air slide is shown below. An eight inch long 
permanent magnet lies on each side of the central air slide. Flux crosses the gap and returns 
through the airslide and backiron holding the magnets. A coil passes through the gap and encircles 
the air slide. The Lorentz force on the coil, which is mounted on the air slide, creates the desired 
Space Station accelerations. 

LORENTZ FORCE INPUT MOTOR AND INSTRUMENTATION 
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The figures below show experimental data from the one DOF testbed with the desired 0.04 
Hz crossover linear controller. The step response shows the desired low friction characteristics that 
facilitate controller testing using expected on orbit parameters. The frequency response of the 
system on the lower plot shows crossover to be somewhat higher than the design value of 0.04 Hz. 
This may be due to unmodeled viscous damping in the air slide. 

STEP RESPONSE OF THE 0.04 Hz BANDWIDTH POSITION CONTROL 

TRANSFER FUNCTION OF 0.04 Hz BANDWIDTH POSITION CONTROL 

Uolts/uolt / Log 

u:~::IIIDlI~I~I~~1 
1011 -- Hertz -- 5 

DSP ExAcclDSP HrAcc 

236 



Nonlinear controllers offer many advantages over linear designs. In this application no 
weight is given to the location of the coil in the gap, as long as the coil does not hit the stops. An 
ideal controller would not apply forces to the suspended platform carrying the experiment unless 
the suspension was likely to bottom out. This actuator nonlinearity suggests a nonlinear controller 
that has a gain that is position dependent. When the suspension is centered, the controller should 
"turn off' and not apply undesirable forces. The gain should increase when infrequent 
environmental accelerations are very large so that the experiment must be forced to follow the 
spacecraft. Such a controller can allow an experiment to free fly at all frequencies, given limits to 
the position amplitude of the vibrations. 

NONLINEAR CONTROLLER ADVANTAGES 

o ALL ACTUATORS HAVE SATURATION NONLINEARITY 

o A LINEAR CONTROLLER APPLIES EXCESSIVE FORCES 

o A NONLINEAR CONTROLLER CAN FREE FLY AT ALL FREQUENCIES (AT SMALL 
AMPLITUDES) 

o THE SUSPENSION COULD BE STIFFENED BY GAIN SCHEDULING ANTICIPATING 
LARGE BASE MOTIONS 

o ADVANCED CONTROLLERS COULD MINIMIZE A COST FUNCTION OF STROKE 
AND FORCE USING A STOCHASTIC MODEL OF EXPERIMENT SENSITIVITY AND 
THE ENVIRONMENT 
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This figure showing D3 mission data illustrates the advantage of a variable gain controller. 
The vast majority of time has quiescent acceleration levels that are orders of magnitude lower than 
the peak values. These typical low levels are shown at the left of the plots here. During the great 
majority of the time that the experiments run, there are no large accelerations requiring isolator 
action. However, if a linear suspension controller is used, every small but finite motion will 
produce a proportional and unwanted experiment acceleration. These low level but frequent 
controller induced accelerations may cause the majority of experiment damage, rather than the 
much more infrequent large accelerations. 
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A controller having the desired "dead zone" characteristic without limit cycling behavior is 
the cubic error controller shown below. The only alteration to a linear position controller is the 
addition of one operation that cubes the position error before it enters the linear compensator. 
This cube operation approximates a dead zone but is smoother. 
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NONLINEARITY 
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The block diagram on the previous page shows how both position control and acceleration 
control are used to isolate base vibrations and reject direct forces. The actuator gap position 
control has a very low bandwidth of 0.04, as developed in the first viewgraphs from environmental 
accelerations and experiment requirements. The acceleration loop should have a bandwidth of 100 
Hz to counterbalance the major directly applied forces. The one degree of freedom testbed has 
position and acceleration control while the six DOF isolator as constructed has only position 
feedback, but could be easily modified to add acceleration control. Describing function analysis can 
be used to model the cubic nonlinearity as 3/4 (amplitudef This shows explicitly that the loop 
gain is reduced dramatically for small excursions. The gain during one DOF cubic controller tests 
was chosen to provide just slightly more force at maximum stroke than the linear design. 
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A CUBIC GAP ERROR NONLINEAR CONTROLLER 

o GAP LOOP IS LOW PASS (0.04 HZ) BASE FOLLOWING. 

o ACCELERATION LOOP IS BANDPASS REGULATOR 
(TARGET = 0) REJECTS DIRECT FORCES. 

o THE NONLINEAR CONTROLLER REDUCES UNNEEDED FORCES DURING LOW 
AMPLITUDE MOTIONS. 

o THE NONLINEAR GAIN GIVES THE SAME LOOP GAIN AT MAXIMUM DISTUBBANCE 
AMPLITUDE (AND THE SAME BANDWIDTH). 

o THE DESCRIBING FUNCTION ALLOWS LINEAR ANALYSIS WHEN THE INPUT 
FUNDAMENTAL PREDOMINATES. 

o THE DESCRIBING FUNCTION OF (A*SIN(WT))3IS 3/4 A2. 

o THE GAP LOOP GAIN BECOMES PROPORTIONAL TO THE ERROR2. 

o A STOCHASTIC DESCRIBING FUNCTION FOR (RANDOM)3 IS 3*0-2. USE FOR GAIN 
SELECTION FOR STOCHASTIC NONLINEAR CONTROLLER. 



The force for small fractions of the maximum displacement is greatly reduced by the 
nonlinear controller. For the gains shown here, the ability of the two controller designs to 
absorb large accelerations is nearly identical. The nonlinear controller applies larger forces at 
large, but infrequent, disturbances than the linear design. In this way, the lack of action at small 
displacements is compensated for. 

CUBIC ERROR CONTROLLER FORCE vs DISPLACEMENT 
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The continuous plots here show the predicted linear response and the predicted nonlinear 
response using describing functions. Nonlinear simulation data points are also plotted. It shows 
that the describing function discussed above approximates very closely the nonlinear response of 
the system. The plot shows the desirable behavior of reduced base following bandwidth for small 
position disturbances. Low bandwidth gives better isolation and less experiment damage. 
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This time plot shows how the nonlinear controller essentially "turns off' when the coils are 
within 15% of the centered position. Because this application has no penalty for small steady state 
position errors, this behavior is preferable because of the lower forces applied to the experiment 
by the controller. 

CUBIC ERROR AND LINEAR INITIAL CONDITION RESPONSES 
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The paper shows that microgravity isolation will be required on Space Station, and that 
current technology can satisfy this need. Lorentz force actuation with nonlinear controls is a good 
match to the requirements of this application. 
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SUMMARY 

o MICROGRAVITY ISOLATORS ARE REQUIRED. 

o 0.04 HZ ISOLATION AND ±1 CM STROKE ARE REQUIRED. 

o BOTH BASE ISOLATION AND DIRECT FORCE REJECTION ARE DESIRABLIE. 

o LORENTZ FORCE ACTUATORS ARE WELL SUITED FOR THIS APPLICATION. 

o A NEW TWO DEGREE OF FREEDOM ACTUATOR WAS DESIGNED. 

o A SIX DEGREE OF FREEDOM SUSPENSION WAS DESIGNED, CONSTRUCTED AND 
TESTED. 

o NONLINEAR POSITION CONTROLLERS CAN REDUCE EXPERIMENT 
ACCELERATIONS. 

o A ONE DOF MICROGRAVITY ACCELERATION TESTBED WAS BUILT. 
INVESTIGATE ACCELERATION DISTURBANCES PRODUCED BY 
CONNECTIONS TO THE EXPERIMENT: 

- POWER 
- SIGNAL 
- COOLING 


