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ABSTRACT 

Many current applications of magnetic bearings for rotating machinery employ 
notch filters in the feedback control loop to reduce the synchronous forces transmitted 
through the bearings. In this paper, the capabilities and limitations of notch filter control 
are investigated. First, a rigid rotor is examined with some classical root locus 
techniques. Notch filter control is shown to result in conditional stability whenever 
complete synchronous attenuation is required. Next, a nondimensional parametric 
symmetric flexible three mass rotor model is constructed. An examination of this model 
for several test cases illustrates the limited attenuation possible with notch filters at and 
near the system critical speeds when the bearing damping is low. The notch filter's 
alteration of the feedback loop is shown to cause stability problems which limits 
performance. Poor transient response may also result. A high speed compressor is then 
examined as a candidate for notch filter control. A collocated 22 mass station model with 
lead-lag control is used. The analysis confirms the reduction in stability robustness that 
can occur with notch filter control. The author concludes that other methods of 
synchronous vibration control yield greater performance without compromising stability. 

NOMENCLATURE 

c derivative feedback coefficient 
cr rotor damping 

C nondimensional bearing damping, c/ c r 
eu unbalance eccentricity 

F b bearing force 

F u unbalance force 

g notch gain 
H feedback transfer function 
k proportional feedback coefficient 
kb open loop magnetic bearing stiffness 

keq equivalent bearing stiffness 

Keq nondimensional equivalent bearing stiffness, keq/ks 

ks shaft stiffness 
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FI 
rotor mass 
bearing rotor mass 

disk rotor mass 

mass ratio, 2mb/md 
notch filter transfer function 
characteristic polynomial 
even part of characteristic polynomial 

odd part of characteristic polynomial 

complex frequency variable 
notch width 
rotor posi tion 
complex bearing displacement, Zl = Xl + j Y 1 

complex midspan displacement, Z2 = X2 + j Y 2 

angle from PD zero to notch zero 
angle from notch pole to notch zero 
angle from notch pole to notch zero 
angle of arrival of locus 
notch pole damping 

notch zero damping 

rigid bearing shaft damping, cr/2~ ksmd 

operating speed, notch center frequency 

nondimensional operating speed, wo/ wr 

rigid bearings critical speed, ~ ks/md 

nondimensional complex frequency, s/ wr 

INTRODUCTION 

In the last decade, active magnetic bearings for rotating machinery have moved 
from a promising concept to industrial application. Magnetic bearings have been installed 
in a variety of machines including pumps and compressors [1,2]. They have been 
employed successfully in several large rotating machinery applications including over 25 
thousand hours of operation on a natural gas pipeline compressor r2]. While these initial 
experiences with industrial application of magnetic bearings have been encouraging, 
problems with their installation have been noted. Often, installation of current design of 
magnetic bearings requires several weeks of "tuning" of the controller [2]. Undoubtedly, 
as digital control becomes more widespread for magnetic bearings, this time will be 
shortened. However, the authors believe that the fundamental factor in the long 
controller installation time is the amount of tuning required to achieve stability and 
acceptable performance. Better analysis of the rotor dynamic and control issues of a 
particular application before installation should greatly reduce on-site tuning. 

One area that the authors believe has undergone insufficient analysis is the use of 
notch filters. Many current applications of magnetic bearings have a notch filter in the 



control feedback loop to suppress rotor synchronous response [3]. The notch frequency is 
placed at the operating speed and causes the bearings effective stiffness and damping at 
this speed to be greatly reduced. In principle, the bearings exert little harmonic force 
upon the rotor and the rotor spins about its inertial axis. Thus, a greatly reduced 
harmonic force is transmitted to the foundation. However, since the stiffness and 
damping of the bearings at the rotational speed is very small, the orbits at the bearings 
may become quite large. The notch filter technique is often referred to as "automatic 
balancing". This name may be misleading since the reduced bearing stiffness and 
damping are not analogous to conventional rotor balancing techniques. In conventional 
rotor balancing, correction weights are added to the shaft so as to reduce the residual 
unbalance. These weights produce forces which rotate with the shaft counteracting the 
forces due to the shafts unbalance distribution. Conventional balancing does not change 
the bearing properties. Thus, conventional balancing does not affect system stability or 
transient response. Notch filtering changes both these since it alters the bearing 
properties. With the notch filter, the unbalance distribution about the geometric axis is 
unaltered; however, the rotor spins about its inertial axis. In theory, the motion of the 
shaft is not transmitted to the foundation because of the very low stiffness and damping. 

Since notch filters achieve synchronous attenuation through altering the magnetic 
bearing feedback loop, stability becomes an important issue. In practice, the stability 
issue has a profound impact upon the efficacy of notch filters as a solution to the 
unbalance response problem. This result has been reported by Beatty [4] for single mass 
flexible rotors with massless bearings. For the same reason, a notch filter controlled 
system may also have poor transient response. 

The authors emphasize, however, that it is not necessary to use feedback 
modification to achieve unbalance response attenuation. Because the synchronous 
response is highly correlated, it can be reduced through an open loop (feedforward) 
scheme without altering the system transient response or stability. This method has 
been employed by many researchers [5,6,7,8]. Recently, the authors have demonstrated 
reductions in transmitted synchronous vibration of 42 dB (over one hundred fold) on an 
experimental rotor rig [9]. It is interesting to note that, to the authors' knowledge, open 
loop controllers are currently not in use on any commercial machines. The promise of 
these controllers will not be discussed further in this paper as the focus remains the 
examination of notch filter controllers which are widely employed in commercial 
machines. 

In this paper, the stability and performance of notch filter control systems is 
examined. In Section II, a rigid rotor model is used to introduce the stability and 
performance issues of notch filter controllers. Section III examines an extended 
symmetric three mass rotor model and solves for a nondimensionalized characteristic 
equation and bearing response. In Section IV, the analysis' results are presented and the 
stability and performance of notch filter controllers is discussed. Section V examines the 
robustness of a 22 mass station model of a high speed compressor with notch filters in the 
feedback loop. Section VI closes with conclusions. 

II. RIGID ROTOR ANALYSIS 

A rigid rotor system with magnetic bearings is discussed here to introduce the 
instability that can be produced by notch filters in the feedback loop. A rigid rotor in 
magnetic bearings without stabilizing feedback may be described by a mass, m, attached 
to a negative spring [10], kb < 0, with a transfer function between bearing force, F b' and 

rotor position, Z 
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z~ 1 
FJ;TSJ = ms2 + kb 

(1) 

A block diagram representation is shown in Figure 1. This system has poles at ± ~ -kb/m 

and is unstable since one pole is in the right half of the complex plane. The system may 
be stabilized using proportional- derivative (PD) control 

F (s) 
~ == H(s) = cs + k (2) 

resulting in a stable closed loop system transfer function between unbalance force, F , u 
and rotor position 

~ 1 
FJSJ = ms2 + cs + keq 

(3) 

where k = kb + k, if c and k are positive. As illustrated in Figure 2, a root locus eq eq 
diagram for the system, the PD control places a zero on the real axis in the left half of the 

complex plane at -kj c. Whether this zero is to the right or left of the pole at - f -kb/m, 

the system will be stabilized provided k > -kb. The bearing of the closed loop system 

will have equivalent stiffness keq and damping c. 

The transfer function for a simple notch filter centered at the operating speed wo' 
characterized by its gain, g, and its width, W, is 

S2 + 2 (owos + W 2 

N(s) = S2 
0 

+ 2 (dwos + w 2 
0 

(4) 

(0 

g=~ W = 2(dwo (5) 

where (0 and (d are the damping of the notch filter zeros and poles respectively. The 

notch gain g is the gain of a signal at frequency Wo as it passes through the notch .. The 

notch depth, D, D = 1 - g ,specifies the amount of signal rejected at woo Note that if 

the notch gain is zero then a signal at Wo is completely removed by the filter. If the notch 

gain is one then the signal is completely passed. The notch width is the width of the 
frequency band where attenuation is greater than -3dB when the notch depth is one [4]. 
Figure 3 shows the magnitude plot of notch filters of various depths and widths. 

A notch filter may be placed in the magnetic bearing feedback loop in essentially 
two fashions: (1) directly in serial with the PD control, and (2) in serial with PD control 
after the plant has been compensated for its negative bearing stiffness. In the first case, 
the controller transfer function is 



F (s) 
~ == H(s) = (cs + k) N(s) (6) 

and in the second case 

F (s) 
~ == H(s) = -kb + (cs + keq) N(s) (7) 

In the first case, if the notch has a gain 

then the system will have a negative stiffness to vibrations at Wo and will therefore be 

unstable. In the second case, the notch gain would have to be negative to produce an 
effective negative stiffness at frequency woo Since it is simpler for explanation and no 

generality is lost, only the second case will be examined in this paper. 

When the notch gain is zero, the bearings have no synchronous stiffness or 
damping and no synchronous vibration is transmitted to the foundation. In practice, 
however, kb cannot be known precisely and one cannot cancel it exactly using feedback. 

It is likely that the bearings after this compensation would have some equivalent stiffness. 
This would limit the ability of the notch filter to attenuate the transmitted vibration. 
Thus, the assumption that kb can be precisely canceled will yield the ideal performance 

for the notch filter. This ideal case is examined here since the problems associated with 
notch filters, as will be shown, are serious enough that even their idealized performance 
will discourage their continued use. 

After feedback compensation for the negative bearing stiffness, the plant (rotor 
plus stabilizing stiffness -kb) has the transfer function 

(8) 

and the notch filter feedback controller has the transfer function 

H(s) = (keq + cs) N(s) (9) 

The plant has two poles at the origin of the complex plane while the controller has poles 
at 

and zeros at 
_ keg 

c 
( 2 
o 

If the notch gain is zero ((0 = 0) then the complex zeros of GH are on the imaginary axis. 

If the notch width is 20% of Wo ((d = 0.1), a possible pole-zero structure and root locus 

is shown in Figure 4. Note that two closed loop poles are in the right half complex plane 
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and the system is unstable. Even though the poles of the notch filter are placed near the 
zeros, the loci stray into the right half plane. 

Interestingly, the conditional stability of zero notch gain controllers can be 
examined through the classical root locus technique of the angle of arrival. The angle of 
arrival is the angle in the complex plane at which a locus approaches an open loop zero. 
Evans [9] first established that the sum of the angles from the open loop poles of the 
system to a point on a locus minus the sum of the angles from the open loop zeros to the 

same point must be 1800
. From this, it is easy to calculate the angle of arrival of a locus 

at a zero. For the example, the loci must approach the imaginary zeros from the left to 

ensure unconditional stability. Thus, their angles of arrival must be between 900 and 

2700
. Given that the notch is thin ((d < < 1), this yields a condition for stability of these 

roots in terms of the angle from the PD zero on the negative real axis to the open loop 
imaginary zero, (3: 

Clearly, this condition is only satisfied when the zero on the real axis is in the right half 
plane. Thus, for a given ratio of equivalent stiffness to damping (which would be chosen 
by the designer for transient response since this determines the log decrement) the closed 
loop system with notch filter will go unstable as the stiffness is increased. 

Indeed, it is easy to show that conditional stability of this kind will always result if 
the notch gain is zero for any notch width. Figure 5 illustrates the argument. Kote that 
for any notch filter of the form Eqn. (4), the poles and zeros lie along a semi-circle of 
radius w in the left half plane. From geometry, the angle from any possible notch pole o 

circumscribing the two undamped zeros is right (Le. <p + e = 900
). The angles from the 

open loop poles to a point on the locus as it arrives at the notch zero are <p, e, 900
, and 

900
. The angles from the open loop zeros to the point are 1/J, (3, and 900 where 1/J, the 

angle of arrival, must satisfy 

for unconditional stability. The angle of arrival condition 

with 

and 

<p + e = 900 
, yields 

-1/J=(3 

This establishes that conditional stability will always occur if the PD control zero is 
placed on the negative real axis (Le., damping and stiffness are positive). Conditional 
stability can only be eliminated by having a notch gain greater than zero. However, as 
the notch is made more shallow, the attenuation of the transmitted synchronous vibration 
is reduced. 



This conditional stability is not surprising since the notch filter introduces phase 
lag at frequencies below the center frequency. Thus, the feedback controller may not 
have phase lead at the rotor natural frequencies, resulting in instability. 

III. FLEXIBLE ROTOR MODEL 

A symmetric three mass rotor model with flexible shaft and notch filter controller 
is examined in this section. The model to be used, shown in Figure 6, is described by the 
Laplace domain dynamical equations 

[mbs2 + i ks + kb + H(s)] ZI (s) = [i ks] Z2(s) 

[mds2 + crs + ks] Z2(s) = [ks] ZI (s) + F u(s) 
(10) 

where mb is the rotor bearing mass, md is the rotor disk mass, cr is the rotor damping, ks 

is the shaft stiffness, ZI (s) is the complex displacement at the bearing, Z2(s) is the 

complex displacement at midspan, H(s) is the controller transfer function, and F u(s) is 

the unbalance force which is assumed to act at the midspan. The feedback controller 
transfer function is given by 

H(s) = -kb + (cs + keq) N(s) (11) 

where N( s) is the notch filter transfer function defined in Eqn. (4). The characteristic 
equation for this system is given by 

(12) 

With the nondimensional quantities w , ( , M, C, K ,and W defined in the r r eq 
nomenclature, the characteristic polynomial, Eqn. (12), becomes 

o = [i M .,\2 + i][.,\2 + 2(r"\ + 1][.,\2 + 2(dW"\ + ZJ2] 

+[2C(r"\ + KeqH.,\2 + 2(r"\ + 1][.,\2 + 2(ow"\ + w2] 

-i [.,\2 + 2(dW"\ + w2] 

(13) 

where .,\ is the nondimensional complex frequency, .,\ = s/wr. This is a sixth order 

polynomial in .,\ which defines the closed loop poles of rotor--<:ontroller system, 

(14) 

where the coefficients are defined by 

P6 = M/2 
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P5 = M(dw + M(r + 2(rC 

P4 = ~ MW2 + 2M(/dw + ~ (M+l) + 4(r(oCw + 4(/C + Keq 

P3 = M (rW2 + (M + 1) (dw + (r + 2(rC W2 + 2(rC + 2(rKeq 

+ 2(4(/ C + Keq) (0 W (15) 

P2 = ~ (M + 1) w2 + 2 (r(dw + (4(/ C + Keq) W2 

+ 4(C + Keq) (r(o W + Keq 

PI = (r W2 + 2(V + Keq) (r W2 + 2 Keq (0 w 
Po = Keq W2 

The unbalance force transmitted through the bearings to the foundation is, in terms of 
the nondimensionalized parameters, 

(16) 

Using the coefficients of the characteristic polynomial, an efficient procedure may be 
employed for finding the largest stabilizing notch depth as a function of the 

nondimensionalized parameters (0' (r' V, Keq, wand M. 

For a system to be stable, the roots of its characteristic polynomial must all lie in 
the left half of the complex plane. Polynomials satisfying this condition are called 
Hurwitz [11,12]. A method for determining the lowest possible notch gain for a stable 
rotor system is to continually check a Hurwitz stability condition as (0 is decreased 

starting with (0 equal to (d (no notch filter). When the notch filter is absent from the 

feedback loop, the rotor system will be stable if C and Keq are positive. As the notch is 

made deeper for a given bearing (V, Keq), the closed loop poles will move continuously in 

the complex plane. When the notch becomes of sufficient depth, a complex pole will 
enter the right half plane. On a Nyquist plot, this will appear as a clockwise encirclement 
of the critical point, as discussed in Beatty [4]. As the notch becomes deeper, the 
encirclement will remain. Thus, the range of notch gains between zero and one is divided 
into a stable and an unstable interval. 

IV. SIMPLE MODEL RESULTS 

In this section, the degree of attenuation of synchronous transmitted force 
obtainable with a notch filter controller is examined. This is done to explore the limits of 
notch filters and not to suggest an actual method of implementation. Thus, while we 
show the attenuation possible over an entire speed range, we are not suggesting that this 
is in practice desirable or implementable. 

Given the nondimensional parameters for the rotor (M, ( ), the control (C, K , r eq 



(d)' and the operating speed (w), the notch of greatest possible depth ((0) that may be 

employed while preserving system stability may be found by repeatedly checking 
stability. From the notch depth so determined, the magnitude of synchronous bearing 
force can be calculated using Eqn. (16). This is the minimum transmitted force due to 
unbalance that can be obtained using a notch filter in the feedback loop. (It is easy to 
demonstrate that maximizing notch depth minimizes transmitted force.) In cases with 
non-zero notch gain, the system has only marginal stability. In this case, a pair of poles 
lies along the imaginary axis. Thus, any transient to this system will cause it to 'ring' at 
this frequency. The only way to amend this undesirable behavior is to reduce the notch 
depth and thus the synchronous attenuation obtained. Note that in practice the degree of 
synchronous response attenuation indicated in this analysis cannot be obtained; any 
implemented feedback controller must have some stability margin. 

The analysis was conducted for a three disk magnetic bearing rotor rig used at the 
University of Virginia. This rig has been used in various research projects and is well 
characterized [10,13,14]. The nominal values of the nondimensional parameters are 

M = 1.466 

C = 10.5 

(d = 0.10 

(r = 0.0625 

Keq = 0.906 
(Width = 20% wo) 

Figure 7 shows the theoretical non-dimensional transmitted synchronous force (without 

notch filtering) as a function of nondimensional operating speed wand nondimensional 

bearing damping C. Note the two separate critical speeds at low damping. The limit 
imposed by stability to the attenuation of this synchronous transmitted force are now 
examined. 

In Figure 8 the minimum notch gain that may be employed while maintaining 
stability is shown as a function of operating speed and damping. A very deep notch can 
be obtained above the first critical speed if a high degree of bearing damping is employed. 
However, if the bearing damping is less than five times the rotor damping, a notch in the 
region of the second critical cannot be 20 dB deep (gain of 0.1). To achieve this depth at 
the first critical, the bearing damping must be approximately twenty times the rotor 
damping. Unfortunately, the synchronous vibration problem is greatest at the critical 
frequencies where the notch must be the shallowest to maintain stability. In design of PD 
control for magnetic bearings, the damping is chosen to yield good transient performance 
and robustness to unmodeled destabilizing forces. It is not desirable to set the bearing 
damping so as to permit the use of a notch filter. 

Figure 9 shows the minimum synchronous bearing force that can be achieved wHh 
a notch filter controller at each operating speed as a function of bearing damping. The 
notch employed at each operating speed and damping is the deepest that may be used 
with system stability maintained. As Figure 8 suggests, the attenuation of notch filter 
control when the bearing damping is light is poor near the rotor criticals, approximately 6 
dB as can be seen in comparing Figures 7 and 9. When the nondimensional rotor 
damping is above 10, 20 dB (factor of 10) attenuation can be obtained at any operating 
speed. 

Figure 10 shows the nondimensional bearing force (without notch) for the same 
three mass rotor model as before except that the bearing masses have been reduced to one 

quarter the midspan disk mass (M = 0.5). Thus, this model acts more like a single mass 

c-3 
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rotor. Note that the second critical speed is significantly higher. Figure 11 shows the 
minimum stabilizing notch gain as a function of the nondimensional rotational frequency 
and damping. Note that the range of operating speeds at low damping near the second 
critical speed requiring shallow notch filters is much broader than with the first rotor 
examined (Figure 8). Interestingly, the maximum transmitted force with the notch filter, 
Figure 12, does not occur at the same frequency as the second critical (without notch) or 
where the notch is the shallowest. While this seems counter-intuitive, the introduction of 
the notch filter alters the location of the closed loop poles in the complex plane. As 
discussed by Dorf [15], the synchronous response of a system is inversely proportional to 
the distance of the poles from the synchronous frequency on the imaginary axis. Thus, 
the maximum synchronous response of a synchronous notch system will not occur at the 
critical frequency of the system without notch since the closed loop pole locations have 
been altered by the introduction of the notch. 

The author wishes to emphasize that the performance indicated here is ideal since 
it has been assumed that the unstable bearing stiffness can be precisely canceled through 
feedback and that notch filter controller-rotor system can operate without any stability 
margin. It should also be pointed out that the notch controller-rotor systems represented 
that are marginally stable possess a pole on the imaginary axis. Therefore, any 
disturbance acting at this asynchronous frequency will result in very large dispIacements. 

v. ROBUSTNESS ANALYSIS 

We now examine a more realistic rotor model to gauge the effect of notch filters on 
magnetic bearing system robustness. The 'rotor' employed for this analysis is a 22 mass 
station model of a high speed test rig constructed at the University of Virginia to 
simulate an aircraft compressor [16]. The designed operating speed range of this machine 
is 30,000 to 70,000 rpm. The model employs collocated sensors and actuators and local 
lead-lag control. The negative bearing stiffness is assumed to have been compensated. 
The magnetic bearings and the sensors are assumed to have infinite bandwidth" 
Gyroscopic terms are not included in the model. These assumptions were made so that 
the results are easier to analyze. We may fairly attribute changes in robustness with the 
introduction of notch filters to the notch filters themselves and not to the notch filters' 
interaction with other destabilizing mechanisms (e.g. non-collocation). The rotor with 
bearing locations is shown in Figure 13. 

The structured singular value method is used to analyze the magnetic bearing 
system robustness with notch filters. Multiplicative uncertainty elements (~1' ~2) are 

placed in the feedback path as shown in Figure 14. These uncertainties are complex 
numbers and therefore represent some gain and phase change to the signals in the 
feedback loop. A notch filter operating speed is fixed and the structured singular values 
of this plant (rotor, phase lead control, notch filters) with respect to the multiplicative 
uncertainty is computed [17]. The structured singular value is the inverse of the size of 
the smallest complex uncertainty matrix ~ = diag (~1' ~2) which destabilizes the 

system. Thus, the structured singular value can be thought of as the inverse of the 
gain/phase margin at each frequency. Large structured singular values in a frequency 
range indicates poor stability robustness to unmodeled dynamics in this frequency band. 

In this analysis, the maximum structured singular values over frequency is found 
for the rotor system with and without notch filters. This serves as our robustness 
measure. We examine this measure as a function of the center frequency of the notch 
filter. Robustness is therefore examined as a function of notch filter/rotor operating 
speed much as in Section IV. 



In the first analysis, a narrow notch with a notch gain of 0.1 is used. Figure 15 
shows the maximum structured singular value as a function of notch center frequency. 
Also shown is the maximum structured singular value for the system without notch 
filters. Note that the maximum structured singular value ("mu") is highest in the region 
of the rotors critical speeds without notches (first critical: 5530 rpm; second: 10910 rpm; 
third: 22350 rpm; fourth 55800 rpm). Thus, if a notch filter with 20 dB attenuation were 
used on this rig near one of these speeds, the system would be much more prone to 
destabilization due to uncertainties in each feedback loop. The use of notch filters in this 
operating speed range will make the rotor system much more sensitive to components in 
the feedback loop (sensors, filters, amplifiers, and actuators). This may help to explain 
the difficulties experienced in "tuning" magnetic bearing systems. 

The maximum structured singular value can be converted to either gain margin or 
phase margin specifications. These margins are guaranteed margins; that is the system 
will be stable for at least the amount of variation specified by the margin. Because the 
system we are examining is a resonant system (which is always stabilized by collocated 
phase-lead control), closed loop stability is much more sensitive to phase changes. Thus, 
it is reasonable to expect that the actual multivariable phase margin is not much greater 
than the guaranteed phase margin specified by the maximum structured singular value. 
Figure 16 shows the guaranteed phase margin as a function of notch center frequency. 
Note that without notch filters, the system has 41· phase margin. However, with a notch 
filter included, the phase margin drops considerably, especially near critical speeds. It 
should be noted that most control systems are designed to have phase margins greater 
than 20·. In the author's opinion, a healthy phase margin is necessary for a properly 
running magnetic bearing system. 

This analysis was also carried out with a notch filter with 40 dB depth. The 
maximum structured singular value as a function of notch center frequency for this case is 
shown in Figure 17. Below approximately the third critical speed the rotor is unstable 
(without any multiplicative uncertain). As the notch center frequency is increased, the 
system becomes less sensitive to phase/gain changes in the feedback loops. Figure 18 
shows the corresponding guaranteed phase margin of the system with and without notch 
filters as a function of notch center frequency. Note that at no frequency in the rotors 
operating speed range will the system with notch filters have a phase margin of 20· . 
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VI. CONCLUSIONS 

Analysis of synchronous notch filter controllers for unbalance response attenuation 
of magnetically suspended rotors demonstrates that the introduction of a notch filter into 
the feedback loop has a profound affect on system stability and robustness. It was shown 
that for a rigid rotor complete attenuation was impossible without conditional stability. 
For flexible rotors, notch depth was restricted by instability near the critical speeds. If 
the bearing damping is low, transmitted force attenuation is small near the critical speed. 
When set for a given operating speed, asynchronous disturbances can cause large 
displacements since the notch filter controlled rotor may be marginally stable. This is an 
important consideration for practical rotor systems which have subharmonic excitations 
due to cross coupled effects such as seals. Structured singular value analysis was used to 
show the reduced robustness that may occur when notch filters are introduced into the 
feedback loop. This analysis examined the robustness with respect to the simultaneous 
inependent gain/phase changes in each loop. Notch filter controllers may also have poor 
robustness to changes in the rotor (for example, thermal induced changes in Young's 
modulus) and destabilizing fluid forces which are not representable by this structure. 

Due to these problems with notch filter controllers, the author strongly 
recommends that magnetic bearing users employ open loop (feedforward) control 
strategies for synchronous vibration reduction. These controllers have been demonstrated 
by many researchers to yield superior vibration attenuation with no stability problems. 
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Figure 1: Block diagram of rigid rotor system in magnetic bearings 
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Figure 2: Root locus for PD control of a rigid rotor 

197 



0 

CQ -5 
'0 
C .;; 
0 -10 

-\~-l 

100 

t:IO 
0 II) 

'0 

~ 
! -l00r Q.,. 

-2~_1 

... 
a 
9 

s 

198 

3 

2 

1 

0 

-1 

-2 

-3 
-s 

Figure 4: 

\( 

1oo 

Frequency (rad/sec) 

f\-
~ 

tOO 
Frequency (rad/sec) 

Figure 3: Notch filter magnitude plots 
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Figure 5: Locus angle for arrival condition ((0 = 0, (d < 1) 
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Figure 6: Symmetric three mass rotor model 
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Figure 7: Nondimensional transmitted synchronous force at each nondimensional 
operating speed as a function of nondimensional bearing damping 

(M = 1.466, (d = 0.1) 

Figure 8: Minimum notch gain at each nondimensional operating speed as a 

function of nondimensional bearing damping (M = 1.466, (d = 0.1) 



Figure 9: With notch filter control: Nondimensional transmitted synchronous 
force at each nondimensional operating speed as a function of 

nondimensional bearing damping (M = 1.466, (d 0.1) 

C> 

Figure 10: Nondimensional transmitted synchronous force at each nondimensional 
operating speed as a function of nondimensional bearing damping 

(M 0.5, (d 0.1) 
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Figure 11: Minimum notch gain at each nondimensional operating speed as a 

function of nondimensional bearing damping (M = 0.5, (d = 0.1) 

Figure 12: With notch filter control: Nondimensional transmitted synchronous 
force at each nondimensional operating speed as a function of 

nondimensional bearing damping (M = 0.5, (d = 0.1) 
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Figure 13: High speed rotor for model aircraft compressor 
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Figure 14: Uncertainty elements in feedback path 
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Figure 15: Maximum structured singular value with and without notch filters as a 
function of operating speed (notch gain = 0.1) 
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Figure 16: Guaranteed Phase margin with and without notch filters as a function of 
operating speed (notch gain = 0.1) 



r--
! 
r 

:J 
~ 

101~ 
~ ~ 
~ f--

I 

r--

WITH NOTeB 

I 
~ ~ 

: WITHOUT L ___ -- - - ______________ - - - - - - _____________ -- - - - - - - - - -- - - - - - - - - - -- - - -- -- - - - - ---_ - ---- - - -- - -- -- - - - ____ ---- -- - - - ___________ _ 

i IOoLI ________________ ~ ________ ~ ____ ~ ____ ~ __ ~ __ ~ ____ ~~ 
104 

OPERATING SPEED (RPM) 

Figure 17: Maximum Structural singular value with and without notch filters as a 
function of operating speed (notch gain = 0.01) 
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Figure 18: Guaranteed Phase Martin with and without notch filters as a function of 
operating speed (notch gain = 0.01) 
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