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ABSTRACT  

This paper presents a decoupling and fault tolerant 
control algorithm for a segmented arc, Lorentz self 
bearing motor with open coil faults.  The particular 
motor uses 12 phases to produce forces in the x and y 
directions and the motoring torque.  The algorithm uses 
the redundancy in these phases to adapt to open coil 
faults that result in failed phases.  In this approach a 
model of the actuator torque-current and force-current 
relationship is computed for a given fault condition.  
Since this model includes the commutation sequence 
for the motor, it must be computed at each sampled 
time step.  This model is then inverted onto itself which 
reduces the current gain matrix to the identity matrix 
and eliminates any cross-coupling effects.  Any desired 
current gain matrix is then achieved by inserting it into 
the feed forward path.  Results indicate a high level of 
redundancy in the actuator such that several faults can 
be accommodated simultaneously.  The results also 
show that the cost of a fault may be a higher power 
usage and lower peak force/torque ability. 

     
 
INTRODUCTION 

The slotless, segemented arc, Lorentz self bearing 
motor was first analyzed by Stephens and Kim [1,2].  
Its advantages include no trade-off between actuator 
force and motoring torque with permanent magnet 
thickness, ultra-smooth angular slewing due reduced 
cogging torque and precise angular pointing.  The most 
significant disadvantage of this design is that the 
actuator current gain and negative stiffness matrices 
were found to be cross-coupled and to vary with the 
rotor angle.  The approach taken has been to treat this 
cross-coupling and variation as model uncertainty and 
to synthesize robustly stable controllers.  The 
robustness of such controllers was evaluated using µ-

analysis while treating the uncertainties as structured 
[3].  That work demonstrated the successful 
stabilization of the motor for all rotor angles.  However, 
a subsequent analysis [4] showed that the high level of 
uncertainty limits the bearing stiffness and reduces the 
stable region hence impacting performance, as one 
would expect from uncertainty.  These effects 
emphasize the importance of decoupling the model to 
provide a stable bearing force and motoring torque with 
improved performance. 

Open coil actuator faults in magnetic actuators 
result in a change in both the magnitude and direction 
of the actuator force.  This is essentially a cross-
coupling of the actuator.  Therefore, decoupling control 
and fault tolerant control of an actuator can be 
addressed as one and the same.  Fault tolerant control of 
magnetic actuators can be addressed by redundant 
hardware and/or adaptive control software.  Stephens 
and Kim analyzed different coil winding schemes to 
minimize the impact of an open coil fault on the 
Lorentz self bearing motor [5].  Meeker [6] developed a 
general mathematical basis to address fault tolerant 
control in Maxwell type actuators.  Several additional 
schemes have been proposed for achieving reliable 
electromagnetic devices including controller board 
approaches that make use of re-bias linearization.   Na 
and Palazzolo developed an optimization technique, 
which made the magnetic bearing fault tolerant to many 
pole and coil failures [7].   

In this paper, the approach to fault tolerant and 
decoupling control for the Lorentz self bearing motor 
utilizes the redundancy in the 12 motor phases to 
generate only 2 radial bearing forces and 1 motoring 
torque.   The model inversion approach is shown to 
result in complete decoupling and stable control in spite 
of multiple open coil failures.     
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Figure 1:  Lorentz Self Bearing Motor and Control System Under No Fault  

MOTOR DESCRIPTION 

 
Figure 1 shows the layout of the slotless Lorentz 

self bearing motor along with the feedback control 
system for the case of no coil faults.  The actuator 
consists of M=8 permanent magnet pole pairs attached 
to the rotor and N=4 individually controlled winding 
segments attached to the stator.  Each winding segment 
in the motor is an arc of π/2 radians and is attached to 
the slotless back iron.  The windings occupy Ns=12 
stations along each winding segment ID with Nw=85 
individual wires per station.  The 12 stations are divided 
into 4 sets of 3 phase windings.  Each segment 
generates a traction on the surface of the rotor due to 
the PM flux linking with the segment windings (a 
Lorentz-type force).  By precise construction of the 
motor, the tractions due to segments 1-4 are resolved 
into the forces F1x, F2y, F3x and F4y.  Decoupled PID 
controllers, Gcx(s), Gcy(s) and Gcθ(s) are used to 
generate the control voltages Vcx, Vcy and Vcθ.  By 
proper mapping of the control voltages to each 
segment, the segment forces are modulated to produce 
bearing forces in the x and y directions and motoring 
torque in the θ direction.  In the no fault condition the 
mapping is the sum and difference of the control 
voltages as shown in the figure resulting in the segment 
voltages, V1, V2, V3 and V4.  This mapping essentially 
provides an x direction bearing force by decreasing the 
force F1x and increasing the force F3x.  The y direction 
force is generated in a like manner by decreasing the 
force F2y and increasing the force, F4y.  Each of the 
segment control voltages are distributed into 3 phases 

per segment per the commutation logic as shown in the 
figure.  This results in the 12 phase voltages, V11-V43.  
Twelve transconductance power amplifiers are finally 
used to generate the corresponding 12 phase currents, 

[ ]11 12 13 44.... Ti i i i=φi  where i11 is the current in 
segment 1, phase 1 and so forth.  For the purposes of 
this development the amplifier gains are assumed to be 
unity therefore system voltages and currents are used 
interchangeably.  For this system the force-current 
relationship for the motor was found to be [1]: 
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where [Ki] is the current gain matrix, [Kd] is the 
negative stiffness matrix, z is the displacement vector, 
ic is the vector of control currents and Fc is the vector of 
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Figure 2:  Fault Tolerant and Decoupling Control Approach 
control forces.   Note that the current gain matrix is 
cross-coupled and that the direct terms are also a 
function of the rotor angle, θ.  In previous work the 
magnitudes of these cross-couplings and variations 
were shown to be sufficiently small such that stable 
levitation is achievable by treating them as plant 
uncertainty.  However, note that if a fault occurs in a 
given phase then the magnitude and direction of the 
segment forces will not be resolved exactly into the x 
and y directions.  Therefore, the current gain matrix 
will become even more cross-coupled.  The 
fundamental basis of this paper is that all open coil 
faults essentially result in various degrees of cross-
coupling of the current gain matrix.  Therefore, the fault 
tolerant control problem is one of identifying and 
decoupling the current gain matrix for each rotor angle. 
 
 
FAULT TOLERANT CONTROL APPROACH 

Fault tolerant control is achieved by constructing a 
detailed model of the force-current relationship at each 
rotor angle, θ, and simply inverting that model onto 
itself to decouple the system.  Referring to Figure 2, the 
inverted model is inserted in the “fault tolerant 
mapping” block.  The appropriate mapping depends 
upon the relationship between the actuator force vector, 
Fc, and the actuator segment current vector, is, which is 
given by: 
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In this equation, Y(θ) is the commutation matrix that 
distributes the 4 segment currents into the 12 phase 
currents, Y=φ si i , and is constructed as: 
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F is the fault matrix and is a 12x12 identity matrix for 
the case of the no fault condition.   A zero is put on the 
diagonal in place of a one to indicate a fault, such that 

F=φ,f φi i , where φ,fi  is the vector of phase currents 
including zeros currents for the phases that have failed.  

The matrix Λ is termed the phase distribution 
matrix and describes how the phase currents are 
distributed around the stator inner diameter and is 
dependent upon the particular winding pattern used for 
the coils.  Referring again to Figure 1, for this actuator 
there are 4 three phase winding stations (12 total) per 
segment for a total of 48 segments.  Thus the winding 
station current vector is computed by = Λst φ,fi i , where: 
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and where i1(2) is the current in segment 1 at winding 
station number 2 and so forth.  Note that the winding 
stations in Figure 1 are numbered in the 
counterclockwise direction.  The phase distribution 
matrix therefore consists of block diagonal matrices 
given by: 
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where β12x3 consists of identity matrices of the form: 
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Note that a negative sign indicates that the station 
currents are going into the page in Figure 1 (when the 
rotor is in the home position as shown) and a positive 
sign indicates that the station currents are coming out of 
the page.   

Finally, the matrix Φ is the flux linkage matrix that 
relates the individual station currents to the actuator 
forces as = Φc stF i .  This matrix depends upon the 
orientation of each winding station with respect to the 
x, y and θ direction, and on the permanent magnet flux 
distribution.  For the jth winding station the orientation 
with respect to the x axis is: 

 
2( 1)

4j
st st

j
N N

π π πψ = + + −   (7) 

 
where Nst is the total number of winding stations.  For 
the jth winding station the permanent magnet flux 
density is computed using a sinusoidal approximation 
as: 
 

sin( ( ))j m jB B M θ ψ= −   (8) 
 
where Bm is the flux density magnitude.  The flux 
linage matrix is therefore: 
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where R is the rotor outer radius, Nw is the number 
winding turns per station and L is the stator axial 
length. Note that the model, A FY= ΦΛ , maps the 4 
segment currents to the 3 control forces for a given fault 
condition and is, in general, cross coupled.  The model 
is completely decoupled by defining the fault tolerant 
mapping between the segment currents and the control 
currents as: 
 

iA K+=s ci i        (10) 
 
where A+=AT(AAT)-1 and is the Moore-Penrose pseudo 
inverse of the underdetermined model, A, and iK  is 
any desired current gain matrix as defined by the 
designer.  Of course the desired current gain matrix is 
of the completely decoupled variety and may be as 
simple as the identity matrix.  Combining equations (2) 
and (10) illustrates how the method essentially cancels 
the original system, whether it has a fault or not, and 
replaces it with the desired current gain matrix: 
 

i
I

AA K+=c cF i   (11) 

 
Note that this mapping solves the problem of cross-
coupling and current gain variation that exists in this 
actuator even for the case of no fault, as well as 
provides a current gain matrix that remains invariant 
under open coil faults. 
 
 
SIMULATED RESULTS 

For the purposes of analysis an actuator geometry 
consistent with an existing experimental test rig is 
considered.  The actuator considered has Nw=85 
windings per station, an outer rotor radius of R=50.8 
mm, an axial length of L=25.4 mm, and a peak PM flux 
density of Bm=0.77 T.  In previous work the nominal 
direct current gains for this actuator were found to be 
Kixx=Kiyy= 18.26 N/A and Kiθ=2.05 N-m/A.  Therefore, 
the desired decoupled current gain matrix under any 
fault condition is taken as: 

 
18.26 0 0

0 18.26 0
0 0 2.05

iK
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

  (12) 

 
The results presented below are for this sample 
actuator. 
 
 
A.  MAXIMUM NUMBER OF COIL FAULTS 

A central question is:  Under what combination of 
open coil faults does the actuator still perform?  The 
analogous question is:  For what values of the fault 
matrix, F, does A+  exist for all rotor angles, θ?  Since 
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Figure 3:  Typical Fault Evaluation Plot

Table 1:  Fault Condition Evaluation 
Description

Seg 1 Seg 2 Seg 3 Seg 4
Result

1 2 3 1 2 3 1 2 3 1 2 3
No Faults 1 1 1 1 1 1 1 1 1 1 1 1 Stable
All phases in one segment failed 0 0 0 1 1 1 1 1 1 1 1 1 Stable
All segments with phase 2 failed 1 0 1 1 0 1 1 0 1 1 0 1 Stable
All segments with phase 1 failed
(same as phase 3)

0 1 1 0 1 1 0 1 1 0 1 1 Stable

All phases in 1 segment plus 1 phase in
adjacent segment

0 0 0 1 0 1 1 1 1 1 1 1 Stable

All phases in 1 segment plus 1 phase in
opposite segment

0 0 0 1 1 1 1 0 1 1 1 1 Stable

All phases in 2 opposite segments 0 0 0 1 1 1 0 0 0 1 1 1 Unstab
le

All phases in 2 adjacent segments 0 0 0 0 0 0 1 1 1 1 1 1 Unstab
le

All phases in 1 segment and 2 in
opposite segment

0 0 0 1 1 1 0 1 0 1 1 1 Unstab
le

All phases in 1 segment and 1 in
opposite segment

0 0 0 1 1 1 1 1 0 1 1 1 Stable

All phases in 1 segment and 1 in
adjacent segment

0 0 0 1 0 1 1 1 1 1 1 1 Stable

2 different phases failed in each segment 0 0 1 0 1 0 1 0 0 0 0 1 Unstab
le

Table 2:  Decoupling and Fault Invariance for 
Control Current Vector [ ]1 1 1 T
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A+=AT(AAT)-1, then existence depends on (AAT)-1, 
which does not exist when AAT is singular.  Therefore, 
for a given fault condition, F, the actuator can still 

perform as long as: 
 

0    TAA θ≠ ∀   (12) 
 

Figure 3 illustrates this computation for a fault 
condition of diag(F)=[000 100 010 001] which 
indicates faults in all phases of segment 1, phases 2 and 
3 of segment 2, phases 1 and 3 of segment 3 and phases 
1 and 2 of segment 4.  Note that 0 TAA = at three rotor 
angles per pole pitch indicating that the actuator cannot 
perform under this combination of faults and is 
therefore unstable.  This fault evaluation was performed 
for a variety of possible faults for this actuator.  Table 1 
below summarizes the results.  From this table it is seen 
that due to the high level of redundancy in the actuator 
(12 phases used to generate 2 forces and 1 torque), it is 
able to perform under a large number of possible open 
coil faults. 

 
 
 

 
 
 
B.  DECOUPLING & FAULT INVARIANCE 

Table 2 shows the results of two simulations as 
compared to the desired decoupled current gain matrix. 
One simulation is based on the orginal control of the 
system with no fault tolerance or decoupling. The other 
simulation is based on the fault tolerant control 
algorithm.   This table gives the resulting actuator 
forces in the x, y and θ directions when the control 
currents are 1 ampere for each axis.  The first fault 
condition examined is diag(F)=[111 111 111 111] 
which corresponds to no fault.  Since the actuator gains 
are known to vary with rotor angle, results are 
presented for the home position of θ=0o and for ½ of a 
pole pitch or θ=2.81o in this actuator.  The effectiveness 
of the algorithm is seen in decoupling the actuator over 
all rotor angles for this fault condition.  The second 
fault condition examined is diag(F)=[000 100 010 001] 
which corresponds to a condition where only 3 phases 
are operational in the actuator.  The effectiveness of the 
algorithm in handling a large number of open coil faults 
is seen as for this condition as the system is clearly 
unstable when no fault tolerant control is used. 

 
 

C.  PERFORMANCE DEGRADATION 
The preceding results show that the fault tolerant 

control algorithm clearly results in an invariant current 
gain matrix under many fault combinations.  The 
natural question is then: What price is paid for these 
faults?  There are two: 
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1) The total current draw and hence the actuator 

power loss increases, all else being equal. 
 
2) For a given peak current limit, the maximum 

force and torque generation decreases, all else 
being equal. 

 
Figure 4 shows the peak force and torque capacity 

for a given fault condition assuming that the maximum 
RMS current in a given coil is limited to 2 amperes.  (In 
a Lorentz force actuator this limit is a function of 
thermal dissipation.  As coils fail, this limit may be 
increased.  However, for the purposes of illustration it 
is assumed that this is a fixed limit.)  This figure clearly 
demonstrates the reduction in peak force and torque 
capacity that occurs as the number of faults increases.    

Figure 5 illustrates how the total current used by 
the acutator to produce a given set of bearing forces and 
torque is increased as more faults occur.  In this figure 
the control current vector is maintained at 

[ ]0.5 0 0.5 T
=ci .  As a fault occurs, the algorithm will 

adjust the phase currents to maintain the desired bearing 
force and torque.   As the figure shows, in general, the 
total current used by all phases tends to increase as the 
number of faults increases.  Note that for a specific 
rotor angle, this may not always be the case, but for a 
given fault condition over all rotor angles, the total 

current draw will always increase, hence reducing the 
efficiency of the motor.  This fault tolerant algorithm 
therefore provides a graceful degradation in 
performance of the actuator. 

 
 

CONCLUSIONS  
The model based algorithm presented in this paper 

has the potential to decouple the segmented arc, 
Lorentz self bearing motor and to provide graceful 
degradation in performance under open coil faults.  The 
analysis showed a high level of fault protection under 
the algorithm which is due to the redundancy in the 
actuator.  The cost of the fault protection was found to 
be a lower limit on peak actuator force and torque, and 
a high power loss.  Future work will focus on 
experimental results and on the robustness of the 
algorithm to uncertainty in the model. 
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