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ABSTRACT tion uses the framework of Shabana [10] and generalizes
This paper describes the derivation of a nonlinear orthe rigid body model derived in [14, 12, 13] to which
dinary differential equation model for a flexible rotor flatness-based nonlinear control methods have been suc-
supported by magnetic bearings. The model is basedessfully applied. It is expected that by extending this
on a finite element formulation which divides the rotor rigid body model to account for flexibility, nonlinear
into flexible Euler-Bernoulli beam elements. In addi- control strategies such as those described in [14, 12, 13]
tion to the Euler-Bernoulli assumption, the derivation could be successfully applied.

assumes no axial deformation, no internal damping, and

no mass unbala_nce. The derived model_can be re_aq:—L EXIBLE SHAFT MODEL

ily implemented in Matlab for purposes of time-domain

) . We consider a shaft supported by one axial and two ra-
simulation.

dial magnetic bearings as shown schematically in Fig. 1.
The shaft is rotated by an electric motor. The axial bear-

INTRODUCTION ing force is denoted’,, the radial forces at the front of
There is considerable interest in using active magneti¢he shaft are denotefi, ,, F,, ., and the radial forces at
bearings to control undesirable vibrations in flexible the rear of the shaft are denotég ,, £}, .. We take the
shafts. Magnetic bearings are useful for providing vi- shaft's length to bé., its mass as:, and assume that the
bration control as their stiffness and damping can beshaft’'s cross-sectional area is small relative to its lengt
adjusted on-line. A good introduction to some of the As well, for simplicity we ignore shear deformation, in-
challenges in flexible rotor modelling and control are ternal damping, and deformation in the axial direction.
described in [9]. Many control schemes which accountWe divide the shaft intaV flexible beam elements and
for rotor flexibility are based on Linear Time Invariant takel;, m;, p;, EI; to be the length, mass, volumetric
(LT1) models which usually result from some form spa- density, and flexural rigidity of elemeritrespectively
tial discretization such as the Finite Element Method(1 < ¢ < N). The following coordinate frames are
(FEM) [7, 6] followed possibly by a model-order reduc- defined: OXY Z is an inertial frame whose origin is
tion [5, 11, 2]. Much of the modelling work involving fixed and located at the centre of the shaft’s front face
magnetic bearings and flexible rotors makes use of rewhen the shaft is un-deformed and centred between all
sults from conventional bearing-rotordynamic literaturebearings. The direction of th&, Y, and Z axes are
e.g. [7]. An LTI model format is a convenient starting shown in Figure 1 with the&l axis pointing out the page.
point for the application of many robust control design The oxyz floating frame is rigidly attached to the cen-
methods such asdd-optimal control [8, 11, 1, 4]. Other tre of the front face of the shaft. The origin ofyz
work on lower dimensional modelling of flexible rotors is displaced fromDXY Z by a vectorR. The orienta-
supported by magnetic bearings makes use of a nonlirtion of theoxyz frame relative taO XY Z is described
ear Jeffcott model [3]. by three angles), 0, and¢. TheOXY Z frame is ro-

This paper will consider the derivation of a FEM tated by an angle about itsY -axis. Call this rotated
model which which is nonlinear. The model deriva- frameOX'Y’Z’. TheOX'Y'Z’ frame is then rotated

*This work was partially supported by the Natural Sciences an an angle@ abf’m its 2’ aX_IS' C,a" this ro.tated f'rame
Engineering Research Council of Canada (NSERC), undetgum ~ OX"'Y”Z". Finally, the orientation obzy is obtained
ber 249681-02. by a rotation ofp about theX”” axis. From [14], the ro-
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FIGURE 1: Un-deformed shaft supported by magnetic bearitys-axes point out of the page.

tation matrix which maps vectors representediryz  the point of intersection of elements- 1 andi to thez-

to OXY Z is given by axis. We denote,;_1, respectivelyy,;, as the flexural
slope of the shaft projected onto thg-plane, respec-
cpcl)  spsp — cpsbed  cpsbsg + sipeg tively zz-plane, at the point of intersection of elements
A= | st ctcg —clsg i — 1 andi. These slopes are measured with respect to
—stpcd  spsbed + cpsg cped — spslse z-axis. The coordinateg v 1, qan 2 denote the flexu-

ral displacements at the rear tip of the shaft, and, 3,
wherecg = cosi,s¢ = sing. An element frame ., denote the flexural slopes at the rear tip of the
0;X;Y;Z; is rigidly attached to elementand its ori-  shaft. Because the origin of the floating frame is de-
gin is taken at the centre of the front face of elementfined at the center of the front face of the shaft, the first
i, the X;-axis remains co-linear with the un-deformed four nodal coordinates in the first element are zero.
centreline of the element, see Figure 2. The front, re- The shape function of theh element is

spectively rear, radial actuators are located at distances

Iy, respectively s 5, in the X -direction from the origin i St 0 S 0 S3 0 S; O

of theOXY Z frame. § = {0 Si 0 S, 0 S3 0 Sy

_ [Séw}
A Ss(wi)
Y where
S1(&) =136 +28), S5(&) =li(& — 28 + &)
Ss(&) = 3¢ —2¢7, Sa(&) = 1:(&) — &)
& = x;/l; isanormalized variable, and is a displace-
ment in theX;-direction. The position of a point in the
ith element with un-deformed coordinates, y;, z;) in
o the O, X;Y; Z; frame can be expressed in the floating
frameoxyz as
Fl (_;UII?%E 2: grojectio? olf the ;haft onto theg/-plane and [ () ;:1 I + @
nodal coordinates of elemeit ri= uga) 4y | = Sﬁ(zi)q} Ty
_ . Lvil@i) + 2i S3(xi)qy + 2
We define nodal coordinates for the beam elements il
using projections of the shaft onto the andzz-planes. Zok=1 lik +
Projecting the shaft onto they-plane, respectively the = | S5(xi)B'qs + yi

xz-plane, we denote,; 3 andqy,;_» as the distance of | S5(z:) By + z;
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when it experiences a deformation. Evidently, the ex-where the integration is over the voluriié of element
pression for’ is approximate and assumes small defor-and M is the positive definite inertia matrix of element
mations. The components q} are the nodal coordi- i

nates of theth element: A= | Mee o Mg
= [qu , , - . , ya]” (Myp)" Miy
Qf = [94i—3 q4i—2 q4i—1 G4i G4i+1 G4i+2 G4i+3 G4i+4 Where
and B‘ is a Boolean index matrix used to assemble the i
elements v Pi _(Afz‘G)T GT#TF @G
B' = [Ogxa(i—1) Jsxs Osxav—i)] i AN
o . rf = [ Pi _GQTFT i av
From the definition of the shape function we have
T T AT
i (0) = qai—3,u;(0) = qai—1, Mgy _/Vf”N NtV
u;i(l;) = qaiy1, = 44i+3, L
(0) i1t (0) B faits and we have usedA” = I. The total kinetic energy of
vi(0) = qai—2, vi(0) = gai, the shaftisT = S T". Using virtual work and the
vi(li) = qaire,vi(li) = Qaita relationship between the stress and strain, the potential

Letting r{, be the position of a point mass in elemeént energy of theth element due to strain is

expressed iWXY Z 1l 0%, 2 9%, 2
. . U; = — EI; 5 + d,’L‘l
ro =R+ Ar' (1) 2 Jo Ox; Ox?
Li iT 2gi
where R is the vector from the origin 0OXY Z to _EL TBzT/ [d252 d*S}
that of oxy> expressed i XY Z. Defining N (z;) = 2 da?  da?
0 0 w a2Si" 258 .
Ni(z;)| = [S4(x;)B* |, we can rewrite-, as +— 2 dz; B'qs
) . ) dz; dx
N3 (i) S3(x;)B*

The symmetric constant positive semidefinite stiffness

, , matrixK;ch of element; is
=R+Ar'=R+ A |yi| + AN"(z;)qs

Z 2 2 2qiT 2ci7
| / Bl BzT|:d 3" d 5;2+d 5;3 d 523}31 de;
Taking the time derivative of; and denotinguy,; as dei  dzi  d;

the velocity vector of framexyz relative toOXYZ  The total potential due to strain energy is therefore
expressed iV XY Z gives

. . ) . . _ 1 1 0 0 1
7o = Ro + Ar' + Ar* = Ry + A(wgy x r*) + AN*gy Us = Eq?Kfof = §qT [0 Kff:| q= iqTKq
:RO—A(Ti kaf)-i-ANi(]f h % ZN K A _ " t'(2) |
: ; ; . where K;; = 37", K}, Assuming gravitationa
= — A7’ AN"® . . .
Fo TWks 1 force vector is0 g g¢]* in OXY Z, the potential en-

= Ry — AF'GD + AN' gy ergy due to gravity on théth element is
T . .
whered = [¢ ¢ 6], Ui :/ipi 0 1 1]rigav
_]. 86 0 r ’Fi
G= 1|0 cocd s¢|, _ 4 _ _
o o _/ipz 0 1 1] {R+A Zig ]gdv
[ o —(W' tz) u oy S
St 4 . _xt .
7= vi+zz g T :/ pi [0 1 1] {R—s—A Niqr +yi| |gdV
—(u* + y;) T 0 i N§Qf+zi
I fr— 3 T f— . ) . .
Lettingg = [X Y Z ¢ ¥ 0 ¢5 go-.. aaval = Tpgtotal potential energy due to gravity is

[¢} q7]", we express the kinetic energy of elemént

N
1 1o _ '
Tlii/ piril iy dV = Jq" Mg Ug—ZUé
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Using Lagrange’s Principle the dynamic model is

Mi+Gi+Kqg+ge=F

forces given by

19(¢g"Mq) |
Gi— N M9
q ) g + Mgq
where
T OM ]
gT oM
T of
.T . q 0q2
o(¢"Mq) _ : i
dq
T _OM
_q 6‘14N+6_
AN+6
. oM
M = —q;
a%‘q

i=1

The forceg, is due to gravity and given by

_ | Gre
o= ]

N Jvipi [0 1 1]

grezz
T feeo 1]
foonlo 1 1]

Defining §;(i) as a4 N x 1 vector with itsith element

0
m;g
m;g

SRR
Niay +yi
_Néqjt + z;

o]
Niqs + yi
Ngqu + z;
SRR
Né‘]f +Yi

24
99

9A
o

24
26

| N3qy + 2 |

equal to 1 and its other elements 0, then

gfe:Z

i=1

0

Jyipi[0 1 1] A |N3gr(1)| gdV

N3y (1)
0

Joipi[0 1 1] A |Nigp(2)| gdv

N3qr(2)

0

Jyipi[0 1 1] A|N3Gs(4N)| gdV

N3gs(4N)

3)

where[' is a vector of external forced/ = Zf;l M
is the inertia matrix. G¢ is the vector of centrifugal

(4)

gdVv

gdV

gdVv

In component form (3) is

MT'TQ'T + M'rqu + der

+Qrqu +gre:Fr (5)
M + Mygiis + Qprgr + Qrridy
+ Kyrpqp +gse = ByFy (6)

where the external forces due to the magnetic bear-
ings areFy = [F,, F.. Fny Fh7z]T, F. =

[F, 00 D, 00" andBy = [B, Bu| = (bi,i)anxa
whereB,, By are4N x 2 boolean matrices anB,, is

the electric motor torque. Elemeby; of matrix By is
related to the position of airgap. We assume the lengths
of the elements have been chosen so that the radial air-
gaps occur at the junction of two elements. If the radial
airgaps are located at the junctions ofttieand {+1)th
elements and the junction of thth and ¢ + 1)th ele-
ments we have

1, k=1,21=4G—-1)+k
bi=<¢1, k=341=4G—-1)+k—-2
0, otherwise

Next we obtain an expression for the radial airgaps
in terms of state;. We use the subscripts and h to
denote the front and rear of the shaft respectively. The
X-direction distances of the front and rear airgaps to the
origin of OXY Z are denoted; ,, andiy ;, respectively.
TheY, respectivelyZ coordinate of the shaft’s center-
line at the front and rear bearing expresse®iNY Z
are denoted? 5, ,, andZy j, ;,, respectively. Using (1)

1l/f’h/v ReAr=R+A| 4 @)
fhjo| =+ Ar =L+ {BT ]
Zf,h/v h/'uqf
[ X [ Ceped 0
=|Y| + (sl + A [BT q }
| Z | —(s¢ch hjvdl
_Xp,h/v_ Cerpeh
= Y;n,h/v + 489 (8)
| Zp,h /v | —(sych

where we have defined
Xpnjw =X+
[ss¢ — cipsbcg  cshsd + sipeg] B;{/vCIf
Vonjo =¥ + [cBob —chsd] B05
Zyhjo = Z+
[swsﬁcd) +cpsp  —sihsfsg — Cﬂfcﬁb] Bg/vqu

Solving for( in the first equation in (8) and substituting
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this into the last two equations of (8) gives

(l Jh/v _X h 1;)89

Yf,h/v: Lh/ Cd)Cg / +Yp,h/va (9)
(Xpnjo = lpny)sy

Zpppo = —2 [ wa [0 + Zphjo (10)

which are expressions for the position of the shaft's cen-
tre expressed as functions of statat the radial actua-
tors.

Assuming smalt), # we havey ~ sy, cyp =~ 1,0 =~
s6, andcd ~ 1. Thus, the matriced andG become

1 0 0 1 0 0
A=10 cp —sp|, G=|(0 cp s¢
0 s¢ «co 0 —sop co
and expression (9)—(10) become
Yf,h/v = (lf,h/v - X)e + Yp,h/v
Zf,h/v = (X - lf,h/v)w + Zp,h/'u
where
ph =Y + [C¢ _S¢] B}?Qf
Yoo =Y+ [cp —s¢| Bl gy
p h = Z + [S¢ C¢] B}j;q]f
- - cp —so .
Defining A = sb b } and y =
[Yf’v Zf’v Yf,h nyh]T, we have
A0
y=Cigr + [0 ;J B q
where
0100 0 lyp — X
o0 1 0 X1 0
“G=10 1 0 0 0 L — X
0 01 0 X—lp 0

In order to check a Matlab implementation of the

model (5)—-(6) we compare the frequencies of a non-

rotating free-free uniform cylindrical beam obtained us-
ing an analytic solution to the Euler-Bernoulli equation

mw(§,t) + Elweeee(§,1) =0, €€ (0,L)
’wgg(o, t) =0, (12)
weee (0,1) = 0, (12)
wee(L,t) =0, (13)
weee(L,t) =0, (14)

whereE1 is rigidity of the beam anab is the displace-
ment field. Using separation of variableg¢,t) =
U(&)V(t) we obtain

Defining A = w?m/(EI) and using the boundary con-
ditions (11)—(14) we obtain the following condition on
Al

1 — cos(AL) cosh(A\L) = (15)

Numerically solving the roots of (15) gives the first four
frequenciesw/(2m) 1848, 5093, 9984, 16505 Hz.
Taking the lowest four values of

eig(M;; Kyr)
27
in one direction of motion we obtain

1849, 5109, 10081, 16669 Hz. Here we usedV =
elements angh = 7800 kg / m*, E = 210 GPa (steel)
andI = wR*/4 (circular cross-sectional area) with
R=.2m.

CONCLUSION

This paper has presented a nonlinear ordinary differ-
ential equation model for a flexible rotor supported by
magnetic bearings. The method is readily implemented
in Matlab. Future work focusses on validating the model
for an actual magnetic bearing test-stand and using the
model for control design.
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