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ABSTRACT
This paper describes the derivation of a nonlinear or-
dinary differential equation model for a flexible rotor
supported by magnetic bearings. The model is based
on a finite element formulation which divides the rotor
into flexible Euler-Bernoulli beam elements. In addi-
tion to the Euler-Bernoulli assumption, the derivation
assumes no axial deformation, no internal damping, and
no mass unbalance. The derived model can be read-
ily implemented in Matlab for purposes of time-domain
simulation.

INTRODUCTION
There is considerable interest in using active magnetic
bearings to control undesirable vibrations in flexible
shafts. Magnetic bearings are useful for providing vi-
bration control as their stiffness and damping can be
adjusted on-line. A good introduction to some of the
challenges in flexible rotor modelling and control are
described in [9]. Many control schemes which account
for rotor flexibility are based on Linear Time Invariant
(LTI) models which usually result from some form spa-
tial discretization such as the Finite Element Method
(FEM) [7, 6] followed possibly by a model-order reduc-
tion [5, 11, 2]. Much of the modelling work involving
magnetic bearings and flexible rotors makes use of re-
sults from conventional bearing-rotordynamic literature
e.g. [7]. An LTI model format is a convenient starting
point for the application of many robust control design
methods such as H∞-optimal control [8, 11, 1, 4]. Other
work on lower dimensional modelling of flexible rotors
supported by magnetic bearings makes use of a nonlin-
ear Jeffcott model [3].

This paper will consider the derivation of a FEM
model which which is nonlinear. The model deriva-
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tion uses the framework of Shabana [10] and generalizes
the rigid body model derived in [14, 12, 13] to which
flatness-based nonlinear control methods have been suc-
cessfully applied. It is expected that by extending this
rigid body model to account for flexibility, nonlinear
control strategies such as those described in [14, 12, 13]
could be successfully applied.

FLEXIBLE SHAFT MODEL
We consider a shaft supported by one axial and two ra-
dial magnetic bearings as shown schematically in Fig. 1.
The shaft is rotated by an electric motor. The axial bear-
ing force is denotedFx, the radial forces at the front of
the shaft are denotedFv,y, Fv,z, and the radial forces at
the rear of the shaft are denotedFh,y, Fh,z. We take the
shaft’s length to beL, its mass asm, and assume that the
shaft’s cross-sectional area is small relative to its length.
As well, for simplicity we ignore shear deformation, in-
ternal damping, and deformation in the axial direction.
We divide the shaft intoN flexible beam elements and
take li, mi, ρi, EIi to be the length, mass, volumetric
density, and flexural rigidity of elementi respectively
(1 ≤ i ≤ N ). The following coordinate frames are
defined: OXY Z is an inertial frame whose origin is
fixed and located at the centre of the shaft’s front face
when the shaft is un-deformed and centred between all
bearings. The direction of theX,Y , andZ axes are
shown in Figure 1 with theZ axis pointing out the page.
Theoxyz floating frame is rigidly attached to the cen-
tre of the front face of the shaft. The origin ofoxyz
is displaced fromOXY Z by a vectorR. The orienta-
tion of theoxyz frame relative toOXY Z is described
by three anglesψ, θ, andφ. TheOXY Z frame is ro-
tated by an angleψ about itsY -axis. Call this rotated
frameOX ′Y ′Z ′. TheOX ′Y ′Z ′ frame is then rotated
an angleθ about itsZ ′ axis. Call this rotated frame
OX ′′Y ′′Z ′′. Finally, the orientation ofoxyz is obtained
by a rotation ofφ about theX ′′ axis. From [14], the ro-
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FIGURE 1: Un-deformed shaft supported by magnetic bearings.Z, z-axes point out of the page.

tation matrix which maps vectors represented inoxyz
to OXY Z is given by

A =




cψcθ sψsφ − cψsθcφ cψsθsφ + sψcφ
sθ cθcφ −cθsφ

−sψcθ sψsθcφ + cψsφ cψcφ − sψsθsφ




where cφ = cos ψ, sφ = sin φ. An element frame
OiXiYiZi is rigidly attached to elementi and its ori-
gin is taken at the centre of the front face of element
i, theXi-axis remains co-linear with the un-deformed
centreline of the element, see Figure 2. The front, re-
spectively rear, radial actuators are located at distances
lf,v, respectivelylf,h, in theX-direction from the origin
of theOXY Z frame.
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FIGURE 2: Projection of the shaft onto thexy-plane and
nodal coordinates of elementi.

We define nodal coordinates for the beam elements
using projections of the shaft onto thexy andxz-planes.
Projecting the shaft onto thexy-plane, respectively the
xz-plane, we denoteq4i−3 andq4i−2 as the distance of

the point of intersection of elementsi−1 andi to thex-
axis. We denoteq4i−1, respectivelyq4i, as the flexural
slope of the shaft projected onto thexy-plane, respec-
tively xz-plane, at the point of intersection of elements
i − 1 andi. These slopes are measured with respect to
x-axis. The coordinatesq4N+1, q4N+2 denote the flexu-
ral displacements at the rear tip of the shaft, andq4N+3,
q4N+4 denote the flexural slopes at the rear tip of the
shaft. Because the origin of the floating frame is de-
fined at the center of the front face of the shaft, the first
four nodal coordinates in the first element are zero.

The shape function of theith element is

Si =

[
S1 0 S2 0 S3 0 S4 0
0 S1 0 S2 0 S3 0 S4

]

=

[
Si

2(xi)
Si

3(xi)

]

where

S1(ξi) = 1 − 3ξ2
i + 2ξ3

i , S2(ξi) = li(ξi − 2ξ2
i + ξ3

i )

S3(ξi) = 3ξ2
i − 2ξ3

i , S4(ξi) = li(ξ
3
i − ξ2

i )

ξi = xi/li is a normalized variable, andxi is a displace-
ment in theXi-direction. The position of a point in the
ith element with un-deformed coordinates(xi, yi, zi) in
the OiXiYiZi frame can be expressed in the floating
frameoxyz as

ri =




r̄i(xi)
ui(xi) + yi

vi(xi) + zi


 =




∑i−1
k=1 lk + xi

Si
2(xi)q

i
f + yi

Si
3(xi)q

i
f + zi




=




∑i−1
k=1 lk + xi

Si
2(xi)B

iqf + yi

Si
3(xi)B

iqf + zi



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when it experiences a deformation. Evidently, the ex-
pression forri is approximate and assumes small defor-
mations. The components ofqi

f are the nodal coordi-
nates of theith element:

qi
f = [q4i−3 q4i−2 q4i−1 q4i q4i+1 q4i+2 q4i+3 q4i+4]

T

andBi is a Boolean index matrix used to assemble the
elements

Bi =
[
08×4(i−1) I8×8 08×4(N−i)

]

From the definition of the shape function we have

ui(0) = q4i−3, u
′

i(0) = q4i−1,

ui(li) = q4i+1,u
′

i(li) = q4i+3,

vi(0) = q4i−2, v
′

i(0) = q4i,

vi(li) = q4i+2,v
′

i(li) = q4i+4

Letting ri
0 be the position of a point mass in elementi

expressed inOXY Z

ri
0 = R + Ari (1)

whereR is the vector from the origin ofOXY Z to
that ofoxyz expressed inOXY Z. DefiningN i(xi) =


0
N i

2(xi)
N i

3(xi)


 =




0
Si

2(xi)B
i

Si
3(xi)B

i


, we can rewriteri

0 as

ri
0 = R + Ari = R + A




r̄i

yi

zi


 + AN i(xi)qf

Taking the time derivative ofri
0 and denotingωkf as

the velocity vector of frameoxyz relative toOXY Z
expressed inOXY Z gives

ṙi
0 = Ṙ0 + Ȧri + Aṙi = Ṙ0 + A(ωkf × ri) + AN iq̇f

= Ṙ0 − A(ri
× ωkf ) + AN iq̇f

= Ṙ0 − Ar̃iωkf + AN iq̇f

= Ṙ0 − Ar̃iGΦ̇ + AN iq̇f

whereΦ =
[
φ ψ θ

]T
,

G =




1 sθ 0
0 cφcθ sφ
0 −sφcθ cφ


 ,

r̃i =




0 −(vi + zi) ui + yi

vi + zi 0 −r̄i

−(ui + yi) r̄i 0




Letting q = [X Y Z φ ψ θ q5 q6 . . . q4N+4]
T =

[qT
r qT

f ]T , we express the kinetic energy of elementi:

T i =
1

2

∫

V i

ρiṙ
iT
0 ṙi

0 dV =
1

2
q̇T M iq̇

where the integration is over the volumeV i of elementi
andM i is the positive definite inertia matrix of element
i

M i =

[
M i

rr M i
rf

(M i
rf )T M i

ff

]

where

M i
rr =

∫

V i

ρi

[
I −Ar̃iG

−(Ar̃iG)T GT r̃iT r̃iG

]
dV

M i
rf =

∫

V i

ρi

[
AN i

−GT r̃iT N i

]
dV

M i
ff =

∫

V i

ρiN
iT N i dV

and we have usedAAT = I. The total kinetic energy of
the shaft isT =

∑N
i=1 T i. Using virtual work and the

relationship between the stress and strain, the potential
energy of theith element due to strain is

U i
s =

1

2

∫ li

0

EIi

[(
∂2ui

∂x2
i

)2

+

(
∂2vi

∂x2
i

)2]
dxi

=
EIi

2
qT
f BiT

∫ li

0

[
d2Si

2

dx2
i

T
d2Si

2

dx2
i

+
d2Si

3

dx2
i

T
d2Si

3

dx2
i

]
dxiB

iqf

The symmetric constant positive semidefinite stiffness
matrixKi

ff of elementi is

Ki
ff =

∫ li

0

EIiB
iT

[
d2Si

2

dx2
i

T
d2Si

2

dx2
i

+
d2Si

3

dx2
i

T
d2Si

3

dx2
i

]
Bi dxi

The total potential due to strain energy is therefore

Us =
1

2
qT
f Kffqf =

1

2
qT

[
0 0
0 Kff

]
q =

1

2
qT Kq

(2)
where Kff =

∑N
i=1 Ki

ff . Assuming gravitational
force vector is[0 g g]T in OXY Z, the potential en-
ergy due to gravity on theith element is

U i
g =

∫

V i

ρi

[
0 1 1

]
ri
og dV

=

∫

V i

ρi

[
0 1 1

][
R + A




r̄i

ui + yi

vi + zi



]
g dV

=

∫

V i

ρi

[
0 1 1

][
R + A




r̄i

N i
2qf + yi

N i
3qf + zi




]
g dV

The total potential energy due to gravity is

Ug =

N∑

i=1

U i
g
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Using Lagrange’s Principle the dynamic model is

Mq̈ + Gq̇ + Kq + ge = F (3)

whereF is a vector of external forces,M =
∑N

i=1 M i

is the inertia matrix. Gq̇ is the vector of centrifugal
forces given by

Gq̇ = −
1

2

∂(q̇T Mq̇)

∂q
+ Ṁ q̇ (4)

where

∂(q̇T Mq̇)

∂q
=




q̇T ∂M
∂q1

q̇T ∂M
∂q2

·

·

·

q̇T ∂M
∂q4N+6




q̇

Ṁ =

4N+6∑

i=1

∂M

∂qi
q̇i

The forcege is due to gravity and given by

ge =

[
gre

gfe

]

gre =
N∑

i=1




0
mig
mig

∫
V i ρi

[
0 1 1

]
∂A
∂φ




r̄i

N i
2qf + yi

N i
3qf + zi


 g dV

∫
V i ρi

[
0 1 1

]
∂A
∂ψ




r̄i

N i
2qf + yi

N i
3qf + zi


 g dV

∫
V i ρi

[
0 1 1

]
∂A
∂θ




r̄i

N i
2qf + yi

N i
3qf + zi


 g dV




Defining q̄f (i) as a4N × 1 vector with itsith element
equal to 1 and its other elements 0, then

gfe =

N∑

i=1




∫
V i ρi

[
0 1 1

]
A




0
N i

2q̄f (1)
N i

3q̄f (1)


 g dV

∫
V i ρi

[
0 1 1

]
A




0
N i

2q̄f (2)
N i

3q̄f (2)


 g dV

·

·

·

∫
V i ρi

[
0 1 1

]
A




0
N i

2q̄f (4N)
N i

3q̄f (4N)


 g dV




In component form (3) is

Mrr q̈r + Mrf q̈f + Qrr q̇r

+ Qrf q̇f + gre = Fr (5)

MT
rf q̈r + Mff q̈f + Qfr q̇r + Qff q̇f

+ Kffqf + gfe = BfFf (6)

where the external forces due to the magnetic bear-

ings areFf =
[
Fv,y Fvz Fh,y Fh,z

]T
, Fr =

[Fx 0 0 Dω 0 0]T andBf =
[
Bv Bh

]
= (bk,l)4N×4

whereBv, Bf are4N × 2 boolean matrices andDω is
the electric motor torque. Elementbk,l of matrix Bf is
related to the position of airgap. We assume the lengths
of the elements have been chosen so that the radial air-
gaps occur at the junction of two elements. If the radial
airgaps are located at the junctions of theith and (i+1)th
elements and the junction of thejth and (j + 1)th ele-
ments we have

bk,l =





1, k = 1, 2, l = 4(i − 1) + k

1, k = 3, 4, l = 4(j − 1) + k − 2

0, otherwise

Next we obtain an expression for the radial airgaps
in terms of stateq. We use the subscriptsv andh to
denote the front and rear of the shaft respectively. The
X-direction distances of the front and rear airgaps to the
origin of OXY Z are denotedlf,v andlf,h respectively.
TheY , respectivelyZ coordinate of the shaft’s center-
line at the front and rear bearing expressed inOXY Z
are denotedYf,h/v andZf,h/v respectively. Using (1)




lf,h/v

Yf,h/v

Zf,h/v


 = R + Ar = R + A

[
ζ

BT
h/vqf

]
(7)

=




X
Y
Z


 +




ζcψcθ
ζsθ

−ζsψcθ


 + A

[
0

BT
h/vqf

]

=




Xp,h/v

Yp,h/v

Zp,h/v


 +




ζcψcθ
ζsθ

−ζsψcθ


 (8)

where we have defined

Xp,h/v = X+
[
sψsφ − cψsθcφ cψsθsφ + sψcφ

]
BT

h/vqf

Yp,h/v = Y +
[
cθcφ −cθsφ

]
BT

h/vqf

Zp,h/v = Z+
[
sψsθcφ + cψsφ −sψsθsφ − cψcφ

]
BT

h/vqf

Solving forζ in the first equation in (8) and substituting
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this into the last two equations of (8) gives

Yf,h/v =
(lf,h/v − Xp,h/v)sθ

cψcθ
+ Yp,h/v, (9)

Zf,h/v =
(Xp,h/v − lf,h/v)sψ

cψ
+ Zp,h/v (10)

which are expressions for the position of the shaft’s cen-
tre expressed as functions of stateq at the radial actua-
tors.

Assuming smallψ, θ we haveψ ≈ sψ, cψ ≈ 1, θ ≈

sθ, andcθ ≈ 1. Thus, the matricesA andG become

A =




1 0 0
0 cφ −sφ
0 sφ cφ


 , G =




1 0 0
0 cφ sφ
0 −sφ cφ




and expression (9)–(10) become

Yf,h/v = (lf,h/v − X)θ + Yp,h/v

Zf,h/v = (X − lf,h/v)ψ + Zp,h/v

where

Yp,h = Y +
[
cφ −sφ

]
BT

h qf

Yp,v = Y +
[
cφ −sφ

]
BT

v qf

Zp,h = Z +
[
sφ cφ

]
BT

h qf

Zp,v = Z +
[
sφ cφ

]
BT

v qf

Defining Ā =

[
cφ −sφ
sφ cφ

]
and y =

[
Yf,v Zf,v Yf,h Zf,h

]T
, we have

y = C1qr +

[
Ā 0
0 Ā

]
BT

f qf

where

C1 =




0 1 0 0 0 lfv − X
0 0 1 0 X − lfv 0
0 1 0 0 0 lfh − X
0 0 1 0 X − lfv 0




In order to check a Matlab implementation of the
model (5)–(6) we compare the frequencies of a non-
rotating free-free uniform cylindrical beam obtained us-
ing an analytic solution to the Euler-Bernoulli equation

mwtt(ξ, t) + EIwξξξξ(ξ, t) = 0, ξ ∈ (0, L)

wξξ(0, t) = 0, (11)

wξξξ(0, t) = 0, (12)

wξξ(L, t) = 0, (13)

wξξξ(L, t) = 0, (14)

whereEI is rigidity of the beam andw is the displace-
ment field. Using separation of variablesw(ξ, t) =
U(ξ)V (t) we obtain

U (4)(ξ) +
ω2m

EI
U(ξ) = 0

Definingλ = ω2m/(EI) and using the boundary con-
ditions (11)–(14) we obtain the following condition on
λ:

1 − cos(λL) cosh(λL) = 0 (15)

Numerically solving the roots of (15) gives the first four
frequenciesω/(2π) = 1848, 5093, 9984, 16505 Hz.
Taking the lowest four values of

√
eig(M−1

ff Kff )

2π

in one direction of motion we obtain
1849, 5109, 10081, 16669 Hz. Here we usedN = 5
elements andρ = 7800 kg / m3, E = 210 GPa (steel)
and I = πR4/4 (circular cross-sectional area) with
R = .2 m.

CONCLUSION
This paper has presented a nonlinear ordinary differ-
ential equation model for a flexible rotor supported by
magnetic bearings. The method is readily implemented
in Matlab. Future work focusses on validating the model
for an actual magnetic bearing test-stand and using the
model for control design.
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