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ABSTRACT

The bearingless slice motor with PM excited two
pole rotor naturally shows a non-linear force distri-
bution. It is common to use standard PID-position-
controllers for industrial applications, hence it is im-
portant to know how linear control schemes will be
influenced by the non-linear part.
Thus, this paper is concerned with rotordynamic

phenomena caused by linearly controlled bearingless
slice motors. The eigenvalues of the equation of mo-
tion illustrate a region of rotational speed, at which
instability occurs. It is shown that with an appro-
priate value of damping established by the controller
or by the surrounding medium asymptotical stability
can be achieved. Furthermore, the effect of applying
arbitrary disturbance forces and the effect of static
unbalance are treated and the maximum stationary
radial amplitudes of the centre of mass are pictured.
Finally, the possible benefits of a complex non-linear
controller design will be discussed.

INTRODUCTION

During the past decade there have been some sig-
nificant advances in the areas of bearingless motor
technology. Over the years, the first serial prod-
ucts entered the market and it turned out that com-
pared to usual motor bearing concepts, this kind of
technology entails a lot of advantages. Bearingless
drives need no lubrication, they have almost unlim-
ited lifetime and they can be used in several appli-
cations where demands on cleanness, chemical re-
sistance and tightness are important [1],[2]. How-
ever, mechanical and electrical complexity is high
and therefore in the range of low cost applications
they hardly gain ground.

A very simple mechanical design can be achieved
with a bearingless slice motor with PM excited rotor
[3]. An advantage of this drive configuration is that
only the radial position and the rotor angle need to
be controlled actively. Axial position of the rotor
as well as tilting is stabilized passively by means of
magnetic reluctance forces [4]. That’s why, an active
engagement can hardly be realised and vibrations
excited in these degrees of freedom are not addressed
in the proposed approach.
Several applications entail different process forces

which act on the rotor and thus radial position con-
trollers must be able to handle all of them. Engi-
neers are used to implement PID-controllers because
they are well known and of high robustness, but do
they meet the requirements of any application? To
answer this question, the next sections show an ap-
proach of the bearingless slice motor from a rotor-
dynamic point of view.

MATHEMATICAL MODEL

Description of the Model

Particularly, for high-speed applications the PM ro-
tor features one polepair with almost sinusoidal field
distribution to keep the motor losses to a minimum.
However, in this arrangement any radial displace-

ment causes magnetic forces as well as coupling of
magnetic forces in x- and y-direction depending on
the rotor angle γ

Fmag = kx

 1 + cx cos(2γ) cx sin(2γ)

cx sin(2γ) 1− cx cos(2γ)

 x

y

 ,
with kx denoting the natural negative stiffness of the
magnetic bearing. The coupling parameter cx is 0.5
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in theory, but it basically depends on the bearing
arrangement [5],[6]. Consequently, it is necessary
to compensate these unstable magnetic forces and
to apply damping to the system. That means that
the minimum demands on the control law are two
independent PD position-controllers

FPD =
h
Px+ dR

·
x Py + dR

·
y
iT

,

which stabilize the radial deflection in x- and y-axis.
Proportional gain P must fulfil

P > (1 + cx) kx

to obtain a resulting positive stiffness independent
of the angel γ. dR is referred to as the damping co-
efficient. Small integral actions are generally part of
the feedback path to eliminate the control error and
to become independent of static load. However, in
the proposed approach integrators are neglected be-
cause of their small influence on operation behavior
at high rotational speeds. Several further assump-
tions are made:

• The rotor is a rigid circular disk with the mass
m and its centre of mass coincides with the
origin of the coordinate system.

• Axial displacement as well as tilting deflection
is 0.

• Radial deflections are not influenced by axial
forces and tilting moments [4].

• The disk is rotating with constant speed Ω
(γ = Ωt), thus there is no vibration excitation
due to accelerating and decelerating.

• Control-forces (PD-controllers) which act on
the rotor can be impressed linear [7].

Additional damping

FD =
h
da

·
x da

·
y
iT

is applied if the rotor is placed in a medium, like for
pump applications, with da indicating the damping
coefficient. Finally, any kind of disturbance is intro-
duced by

FEXT =
h
FxEXT FyEXT

iT
.

RR

γ    = Ωt

I  = 

I = 

FIGURE 1: (I)nitial and (R)eference coordinates

Equation of Motion

Setting up a mathematical model in stationary co-
ordinates using Newton’s law

mI
··
y =

X
IF , (1)

the equation of motion appears in a non-linear char-
acterisation, which makes it difficult to handle. The
two radial coordinates of the centre of mass

Iy =
h

Ix Iy
iT

are assumed to be in an (I)nitial stationary coordi-
nate system. According to classical rotordynamics
books by Gasch, Nordmann and Pfützner [8], and
Krämer [9], rotor models of non-circular shafts show
the same equation characteristics. It is simpler to
transform these two coupled differential equations
with periodically time-varying coefficients (1) to a
(R)eference coordinate system rotating with angular
speed by using the principle of virtual displacement
[10]

δIy = TδRy , T =

 cos(γ) sin(γ)

− sin(γ) cos(γ)

 . (2)

The transformation T as shown in Figure 1 is well
known as Park Transformation in the field of vector
control of AC machines. Applying (2), the equa-
tion of motion (1) viewed in the rotating frame has
constant coefficients. Using additional parameters

ω =

r
P − kx
m

(3)

εk =
cxkx
P − kx

= [0, 1]

D =
dR + da
2mω

,
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it can be combined to

MR
··
y+(D+G)R

·
y+(K+N)Ry =

1

m
RFEXT (4)

with the mass matrix M =MT

M =

 1 0

0 1

 ,

the gyroscopic matrix G = −GT and the damping
matrix D = DT

D+G =

 2Dω −2Ω
2Ω 2Dω

 ,

the circulatory matrix N = −NT and the stiffness
matrix K =KT

K+N =

 (1− εk)ω
2 − Ω2 −2DωΩ

2DωΩ (1 + εk)ω
2 − Ω2

 .

ROTORDYNAMIC BEHAVIOR

Natural Frequencies

First, the homogeneous part of the differential equa-
tion (4) is solved by neglecting damping. Assuming
a solution of the form

Ryh = yve
λt

one obtains ¡
λ2M+ λG+K

¢
yv = 0 (5)

and for yv 6= 0 the characteristic equation is

λ4 + 2(ω2 +Ω2)λ2 + (ω2 − Ω2)2 − ε2kω
4 = 0 .

Calculation of eigenvalues shows that a region of ro-
tational speed exists

ω
√
1− εk < Ω < ω

√
1 + εk

at which instability occurs. In the stable case, har-
monic natural vibrations of frequencies

Rω1,2 = ±
s
(ω2 +Ω2)− 2ωΩ

r
1 +

³ ω

2Ω
εk

´2
and

Rω3,4 = ±
s
(ω2 +Ω2) + 2ωΩ

r
1 +

³ ω

2Ω
εk

´2

arise, which show elliptical mode shapes [11]. How-
ever, natural frequencies describe an oscillation be-
havior in a rotating coordinate system. To achieve
the frequencies in a stationary coordinate system,
the homogenous solution must be calculated and
transformed back to Ix-Iy coordinates. For that,
the eigenvectors of (5) can be obtained applying a
general approach

yv1,2,3,4 =

 λ21,2,3,4 + (1 + εk)ω
2 − Ω2

−2Ωλ1,2,3,4

 .

Assuming a stable region of rotational speed, the
eigenvalues are λ1,2,3,4 = ±jRω1,3. Hence, the eigen-
vectors can be combined to

yv1 =

 are

jbim

 , yv2 = y∗v1 =
 are

−jbim

 ,

yv3 =

 cre

jdim

 , yv4 = y∗v3 =
 cre

−jdim

 ,

with the real coefficients are, bim ,cre and dim. The
general solution of the homogeneous equation is

Ryh = c1yv1e
jRω1 + c∗1y

∗
v1e
−jRω1

+c2yv3e
jRω3 + c∗2y

∗
v3e
−jRω3 ,

whereas c1 = c2 = 1 is no constraint. Rewriting in
real form one gets

Ryh =

 2are cos(Rω1t) + 2cre cos(Rω3t)

−2bim sin(Rω1t)− 2dim sin(Rω3t)

 .

(6)
Finally, a back-transformation of (6) results in the
natural frequencies

Iω1,2 = Ω± Rω1 , Iω3,4 = Ω± Rω3 .

Figure 2 shows these natural frequencies as a func-
tion of rotational speed Ω. Because of back transfor-
mation elliptical mode shapes can be seen as general
Lissajous-Figures from a stationary coordinate sys-
tem. Decreasing εk leads to the asymptotes

Iω1,2,3,4 =
εk→0

2Ω± ω , ± ω .

Influence of Damping

If damping ratio D is small, the influence of damp-
ing on natural frequencies is weak. However, damp-
ing of controller and medium is always present and
ensures that compared to the undamped case, the
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FIGURE 2: Natural frequencies for εk = 0.5

region of instability reduces and that amplitudes
near resonance frequencies remain limited. The in-
fluence on stability boundary can be tested by using
Routh-Hurwitz Stability Criterion on the character-
istic polynomial

det
¡
λ2M+ λ(D+G) + (K+N)

¢
= a0+..+a4λ

4 .

Instability occurs when coefficient a0 gets 0. Ac-
cordingly, one can find a rotational speed dependent
limit of damping ratio

D >
1

2ω |Ω|

r¯̄̄
− (ω2 − Ω2)2 + ε2kω

4
¯̄̄

for stability. Stability charts are found in [8],[9].
Gaining asymptotical stability over the whole rota-
tional speed range results in a minimum of damping
ratio

Dmin(εk) =

s
1

2

µ
1−

q
1− ε2k

¶
. (7)

Static Unbalance

Next, unbalance is introduced, which is the most
frequent source of disturbances. A static unbalance
arises from the eccentricity e0 of the centre of gravity
from the geometric centre established by the coordi-
nate system [8]. For stationary speed in a rotating
coordinate system centrifugal force acts constantly
on the rotor with

me0Ω
2

 cos(γ0)

sin(γ0)

 .
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FIGURE 3: Magnitude of displacement for static
unbalance for D = 0.35 (top) and D = 0.7 (bottom)

γ0 describes the polar place of the eccentricity e0 and
it is the angle of the applied centrifugal force. It is
assumed that damping ratio is above (7) and thus
the homogeneous solution converges to 0. Hence,
the constant displacement

Ryp =
h
xe ye

iT
from the particular solution of (4) leads to xe

ye

 = (K+N)−1e0Ω2
 cos(γ0)

sin(γ0)

 .

The magnitude of displacement is given by

|yp|max =
p
x2e + y2e = f(e0,Ω, γ0,D, εk) . (8)

Figure 3 shows resonance curves for different values
of D and εk. An interesting aspect is that the max-
imum deflections as well as the rotational speeds at
which the maxima occur are strongly influenced by
the angle γ0. Particulary, γ0 =

π
4 + nπ

2 leads to the
highest peaks. However, substituting εk = 0 in (8),
the magnitude becomes independent of the angle γ0.

External Disturbances

In concrete applications, radial position control is
disturbed by a sum of process forces and self excited
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forces. These disturbances can be split up in har-
monic terms

RFEXT = FEXT

 cos(ΩEt)

sin(ΩEt)

 (9)

to calculate the influence of each part. (9) can be
rewritten in

RFEXT = hF + h
∗
F

with

hF =
FEXT

2

 1

−j

 ejΩEt , j = √−1
to make a solving of the differential equation eas-
ier. Applying enough damping, the system shows
stability and the partial solution of (4) is given by

RyhF =
¡
Ω2EM+ jΩE(D+G) + (K+N)

¢−1 hF
m

=

 xre + jxim

yre + jyim

 ejΩEt
Total solution

Ryp = RyhF + Ry
∗
hF

=

 2xre cos(ΩEt)− 2xim sin(ΩEt)
2yre cos(ΩEt)− 2yim sin(ΩEt)


can be combined to

Ryp = (xre − yim) rv(ΩE)

+ (yre + xim) rv(ΩE +
π

2
)

+ (xre + yim) rv(−ΩE)
+ (yre − xim) rv(−ΩE + π

2
)

with the vector

Rrv(ΩE) =
h
cos(ΩEt) sin(ΩEt)

iT
as a unit circle movement. The steady state solution
contains two positive and two negative rotating or-
bits, except for ΩE = 0, but this case is almost the
same as that mentioned in the previous section. If
only the maximum radial amplitude of deflection is
important, it can be calculated by

|yp|max =
p
(xre − yim)2 + (yre + xim)2

+
p
(xre + yim)2 + (yre − xim)2 .
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FIGURE 4: Maximum radial deflection applying

IFEXT = cEΩ
h
cos(2Ωt) sin(−2Ωt)

iT
for D =

0.35 (top) and D = 0.7 (bottom)

As an example, Figure 4 shows maximum radial de-
flection for

IFEXT = cEΩ
h
cos(2Ωt) sin(−2Ωt)

iT
as source of disturbance. It shall only give a quan-
titative overview of the influence of εk and damping
ratio D, wherefore y-axis scaling is not specified in
detail.

DISCUSSION OF RESULTS

Figure 3 and 4 illustrate the influence of εk and D
on the resonance curves. As seen in (3), increasing
proportional gain P of controllers leads to a smaller
εk and therefore to an improved operation behav-
ior. Another point is that a small εk only needs a
small damping ratio D to achieve global stability.
However, high controller gains are only supported
by expansive power electronics. Moreover, applying
a high damping ratio D (controller and surrounding
fluids), εk loses influence on the closed loop control.
Increasing D by the controller, though, the noise of
the position sensors gains influence too.
The outcome is that resonance phenomena fol-

low from controller settings with low gain and low
damping ratio, which one should pay attention to.
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On the other hand, high gain and high damping ratio
(surrounding fluids) add up to a stationary behavior
where non-linearity of the plant loses influence on
the closed-loop control and applying a simple lin-
ear control is sufficient effort for the requirements
of many applications. Non-linear controller design
methods are able to ensure εk = 0 without using
high gain or high damping ratio and for applications,
where the rotor is placed in air (small damping ra-
tio), complex control strategies can yield to a much
better operation performance.

CONCLUSION

In this paper rotordynamic aspects of a bearing-
less slice motor have been introduced. Resonance
phenomena as well as the consequence of applying
disturbance forces are derived from a mathematical
model and should give engineers an overview of pos-
sible problems by neglecting non-linear parts of the
plant to be controlled.
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