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ABSTRACT 

This paper provides methods for investigating 
the design of a class of radial magnetic bearings in 
which axial MMF is provided in each one of a set of 
flat, uniform-thickness circular discs arranged in 
alternation such that every second disc is 
mechanically attached to the rotor and the 
interleaving discs are fixed to the stator. The axial 
MMF in the rotor discs is a sinusoidal function of 
angle and is taken to be independent of radius. 
Similarly, the axial MMF in the stator discs varies 
sinusoidally with respect to angle and is invariant 
with respect to radius. Provided that both the numbers 
of pole-pairs of rotor and stator discs differ by 1, a 
net transverse force can be produced. 

Many questions arise with regard to the design of 
radial bearings of this configuration. A particular 
motivation behind these bearings is to achieve a high 
specific load capacity. This paper sets out a linear 
magnetic analysis for providing a first-cut 
approximate assessment of the force which can be 
generated from such bearings. The analysis proceeds 
using the assumption that lines of magnetic flux 
remain in concentric cylinders. Then for each radius, 
the problem of predicting the distribution of magnetic 
flux reduces to a 2D problem. This 2D problem is 
addressed using linear superposition. The flux field 
due to the MMF on the stator-discs is computed 
assuming that the rotor-discs contribute no MMF. 
Then the flux field due to the MMF on the rotor-discs 
is computed assuming that the stator-discs contribute 
no MMF. When these two fields are added, it is 
possible to compute Maxwell stresses at every 
position in the airgap. The net transverse components 
of force due to flux in a thin-walled cylindrical 
volume are computed and then integrated with 
respect to radius to produce a prediction of the total 
transverse flux in the bearing. 

This paper investigates three different 
arrangements. In Class I: both rotor and stator discs 
are considered to be made up of permanent magnet 
materials and the necessary MMF is generated by the 

 
 

distribution of permanent magnet materials in the 
discs. Class I is a hypothetical case only since the net 
force produced between rotors is a known function of 
the relative rotation of the two components and 
cannot be controlled. In Class II: the rotor is 
considered to be made of permanent magnet and 
stator is wound. In Class III: both rotor and stator are 
wound. Results have been shown for the Class I & II 
in this paper. 
 
INTRODUCTION 
 This paper addresses the magnetic design of a 
class of high specific load capacity magnetic 
bearings. Most magnetic bearings deploy magnetic 
normal stress directly in the production of the bearing 
force. Typically the ratio of maximum bearing force 
achievable divided by the total self-weight of the 
bearing for these designs is less than 100:1 and most 
usually it is more like 40:1 [1]. This ratio is called the 
Specific Load Capacity. A different concept for 
magnetic bearings has been put forward [2] in which 
the bearing force is generated as a result of the 
integration of magnetic shear stress over airgap area. 
This concept provides for the construction of 
magnetic bearings in which the same lines of 
magnetic flux can cut a large number of airgaps and 
can generate significant net shear forces at each one. 
Figure 1 illustrates schematically a set of circular 
discs comprising a bearing from this class. Such 
bearings are implicitly radial magnetic bearings since 
shear-forces at the airgaps between discs must 
necessarily produce resultant forces transverse to the 
rotor and stator axes. There are Parallel-Airgap 
Serial Flux Magnetic Bearings (PASFMBs) which 
can generate axial forces and these necessarily 
comprise interleavements of cylinders. The analysis 
presented in this paper is primarily directed at Radial 
PASFMBs for rotating machines and although some 
results can be carried over to the analysis of axial 
PASFMBs, this is not discussed explicitly. 
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FIGURE 1.  Performing 2D FEA on Axial MMF Radial A.M.Bs FIGURE 1.  Performing 2D FEA on Axial MMF Radial A.M.Bs 

  

  

  

  

  

  

  

  

  

  

FIGURE 2: Axial MMF radial activFIGURE 2: Axial MMF radial activ

  

  

  

  

  

  

  

  
  

FIGURE 3: A 4-pole MMFIGURE 3: A 4-pole MM
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The effective design of any PASFMB inevitably 
involves a full 3D finite element analysis at the final 
stages to address simultaneously mechanical, 
magnetic, heat-transfer and fluid-mechanical 
concerns. However, it is appropriate to have some 
simpler approximate analysis methods so that the 
designer can at least determine a design which will be 
sufficiently close to optimal for his purposes that only 
small adjustments are necessary in response to the 
findings of the 3D FEA. 
 However, to a reasonable approximation, it may 
be assumed that any flux line remains on a cylinder 
of constant radius concentric with the axis of the 
bearing, definitely if distance between poles is short 
compared with radial span. With this assumption in 
place, it is possible to perform a 2D analysis by 
“developing the cylinder” onto a plane and imposing 
suitable periodicity boundary conditions at the “cut” 
edges as Fig. 1 indicates. 
 
THE MULTI-POLE AXIAL-MMF RADIAL 
PASFMBS    
 The PASFMBs themselves divide into multiple 
classes depending on how the magnetic shear stresses 
in each of the airgaps are achieved. For example, one 
class is a class of reluctance bearings wherein the 
direction of the bearing force is determined 
completely by the relative misalignment of the rotor 
and stator axes. Such bearings are clearly passive 
bearings. The MMFs in the rotor and stator discs of 
these bearings are all homopolar (at least, with 
respect to angle). 
 The present paper is interested in high specific 
load capacity bearings in a different class which 
might be described as Multi-Pole, Axial-MMF, 
Radial. They are Axial-MMF because each disc in 
the bearing has a net axial MMF at every point (r, θ). 
It is this axial MMF which is responsible for 
generating the bearing forces. Any other components 
of MMF (due, for example, to coils not lying 
perfectly flat within the discs) are ignored here. The 
bearing of interest is multi-pole because the axial 
MMF varies with θ. In each disc, there is at least one 
complete reversal of axial MMF between θ= 0 and θ= 
2π. It is assumed here that the axial MMF is 
independent of radius, r over a range of radii. 
      Every second disc in the stack is mechanically 
connected to a platform called the stator. The details 
of the mechanical connection are not relevant here 
but for the sake of visualizing the bearing, it is useful 
to think of every stator-disc being fixed at its outside 
diameter to the inside of a single cylinder which is 
held in position by exterior supports.  The first and 
last of the stator-discs are different from the others 
insofar as they must provide for completion of the 
magnetic circuit. Every aspect of the completion of 
the magnetic circuit is ignored here. 
      The stator discs each have axial MMF, MS(r, θ) 
given by  
MS(r, θ) = KS.cos(NSθ+φS)     for all    RI < r < RO  (1) 

        Evidently, the flux field 
since θ = –π represents pre
space as θ = π and θ = 3π e
that the flux field is also p
period of 2(t

    Where RI and RO are, respectively, the inner and 
outer radial limits of the working area of the stator 
discs. The stator discs all have constant thickness, 2tS. 
They are also all assumed to have an equivalent (non-
directional) effective absolute permeability of µS. The 
phase angle, φS, remains always at 0 if the MMF in 
the stator discs is achieved by a distribution of 
permanent magnet material. More usually, however, 
it is expected that the MMF in the stator discs is 
achieved by a distribution of current-carrying 
conductors within the stator discs (very much like the 
motor windings in the disc of so-called pie-shaped 
motors such as [3]).  
     Every other disc in the stack (i.e. every disc that is 
not a stator-disc) is mechanically connected to a 
platform called the rotor. Again, the details of the 
mechanical connection are not relevant here but for 
the sake of visualizing the bearing, it is useful to 
think of every rotor-disc being fixed at their inside 
diameter to the outside of a single cylinder which is 
mechanically integral with the rotor of a rotating 
machine.  
    The rotor discs each have axial MMF, MR(r,θ) 
given by  
 
MR(r, θ) = KR.cos(NRθ+φR)     for all    RI < r < RO  (2) 
 
 z s = –πr s = πr
 
 
 
 
 
 
 
 
 

FIGURE 4: The 2-D
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Here tS, tA and tR are the half of the stator thickness, 
airgap thickness and half of the rotor thickness 
respectively. These end effects are ignored here.  
    The boundary conditions applicable are as follows:  

• Full (2π) periodicity of flux in the s direction 
between the limits (s = –πr) and (s = πr) 

• Normal flux conditions at the limits of z   
 (z = –(tS + tA + tR)) and (z = (tS + tA + tR)) 

     The latter normal flux condition is a consequence 
of symmetry and periodicity. In fact, a simpler 
analysis is possible since the flux field is symmetric 
about every central plane of every stator disc and also 
about every central plane of every rotor disc. Hence 
the region which must actually analysed is that of 
Fig. 4 with the limits of z being (z = 0) and (z = (tS + 
tA + tR)) and with normal flux conditions at these 
boundaries. 
 
LINEAR ANALYSIS, SUPERPOSITION AND 
THE CURRENT DISTRIBUTION 
      There are three different areas in the region 
analysed. These are: 

• a half-stator-disc  (–rπ ≤ s ≤ rπ),  (0 ≤ z ≤ tS).  
• an airgap  (–rπ ≤ s ≤ rπ),  ( tA ≤ z ≤ (tS + tA)). 
• a half-rotor-disc   (–rπ ≤ s ≤ rπ),  ((tS + tA) ≤ 

z ≤ (tS + tA + tR)). 
      There is a source of MMF in both the half-stator 
disc and the half-rotor disc. Since all three regions are 
treated here as being perfectly linear in magnetic 
characteristics, the total flux (vector) field BT(s, z) 
will be treated as the sum of the rotor flux (vector) 
field, BR(s, z), arising from the rotor excitation alone 
and the stator flux (vector) field BS(s, z) arising from 
the stator excitation alone. Thus  
 
                 BT(s, z) = BS(s, z) + BR(s, z)                    (4) (7) 
 
The problem of predicting BT(s, z) splits into two 
problems of identical construction: prediction of BR(s, 
z) and prediction of BS(s, z). 
      For simplicity, the excitations in the rotor and 
stator half-discs are always considered to be derived 
from an equivalent current distribution. Within the 
stator half-disc, the current density is independent of 
z and it is denoted JS(r, s). Similarly, within the rotor 
half-disc, the current density is independent of z and 
this is denoted JR(r, s).  
      From a symmetry argument, it emerges that if the 
net stator MMF at every (r, s) is given by (1), then 
the current density, JS, at every point in the half-stator 
disc must be given by   
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The veracity of this equation can be confirmed from  
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THE AIRGAP SHEAR STRESS AND TOTAL 
FORCE 

        With BS(s, z) and BR(s, z) both known, the total 
flux, BT(s, z), is found by vector addition at every 
point (s, z).  The total force acting on a given rotor 
disc is the sum of two identical forces – one on each 
side. With the “horizontal” direction being defined by 
the directed line θ = 0 and with the “vertical” 
direction being defined as θ = π/2. The horizontal and 
vertical forces acting on each side of one rotor disc 
are given by  
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where τrz(r,θ) and τθz(r,θ) are magnetic shear stresses 
in the airgap. The assumption that flux remains in 
cylinders means that in any plane of constant θ 
cutting through the magnetic bearing, the flux lines 
cross the airgap perfectly normal to the rotor and 
stator discs. For the purposes of computing force, 
therefore, τrz(r,θ) is not considered to contribute and 
attention is focused explicitly on τθz(r,θ). This stress 
is computed as 
                                    ( ) 0µτθ zsz BB=                       (9)
where Bs and Bz are the components of BT(s, z) at the 
center of the airgap (z = (tS + tA/2)).  
      Once the horizontal and vertical forces acting on 
each side of one rotor disc are known, the Mean 
effective magnetic shear stress (MEMSS) is 
calculated by dividing net force by the airgap area. 
Finally the specific load capacity is calculated. 
   
RESULTS AND DISCUSSIONS 
      Based on the method of achieving MMF in the 
rotor disc and in the stator disc this type of bearing 
can be divided into three different classes. In class I: 
both rotor and stator discs are considered to be made 
up of permanent magnet and the necessary MMF is 
achieved by the distribution of permanent magnet 
materials in the discs. Class I is a hypothetical design 
only since the net force produced between rotors is a 
known function of the relative rotation of the two 
components and cannot be controlled. In class II: the 
rotor is made of permanent magnet and the required 
MMF is achieved by the distribution of permanent 
magnet materials and the stator is wound and 
required MMF is achieved by the distribution of 
current carrying conductors. In class III: the rotor and 
the stator are wound and the required MMF is 
achieved by the distribution of current carrying 
conductors.  In this paper results have been shown for 
the Class I and II.  
 
Class I:   
       In the present analysis of this class of bearing the 
design parameters are airgap thickness, inside radius 
of the stator/or rotor, outside radius of the stator/or 
rotor, stator disc thickness, rotor disc thickness, and 
the number of pole pairs in the rotor/or stator disc. 
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Figure 5 shows the MEMSS versus (Zp/IPD) for 
different Zp value when the airgap thickness is 0.4 
mm. The term Zp is already defined. IPD is the inter 
pole distance of the stator pole and calculated as 

             
meanR

N2
2

S

                         (10) π
=IPD

where NS is the number of stator pole pairs and Rmean  
is the mean radius of the bearing.  

MEMSS for different rotor and stator thickness with airgap 0.4 mm
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FIGURE 5: Mean Effective Magnetic Shear Stress 
(MEMSS) for different stator and rotor thickness 
when the airgap thickness is 0.4 mm; inside and 
outside radii of the stator/or rotor are100 mm and 160 
mm respectively. 
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FIGURE 6: Specific load capacity for different airgap 
thicknesses; inside and outside radii of the stator/or 
rotor are100 mm and 160 mm respectively 
     
       Figure 6 shows the specific load capacity against 
the stator thicknesses. Stator disc thickness is kept 
equal to the rotor disc thickness while calculating the 
specific load capacity. Specific load capacity is 
shown for five different airgaps ranging from 0.1mm 
to 0.5 mm. Maximum specific load capacity is 640:1 
and obtained when the airgap is 0.1 mm and stator 
thickness is 1 mm. 
 
Class II:                                                                                            
    In the class II design, the required MMF is 
achieved in the stator disc by the distribution of 
current carrying conductors. In the analysis of this 
class of bearing we define a term called reference 
power dissipation density (Reference PDD) in the 
stator disc. 

 
(a) 

 
 (b) 

FIGURE 7(a) and 7(b): Optimum region of specific 
load capacity.  Airgap thickness, tA = 0.4 mm   NR = 
50, NS = 51, S (Fraction of Cu in the Stator Disc) = 
0.7, RI = 160 mm, RO = 200 mm. 
 
        The reference power dissipation density is 
calculated as . Where J

cuSrefSref tJ ρ)2(2 Sref is the 

reference current density in the stator coil, tSref is the 
half of the stator disc used as reference while 
calculating the reference power dissipation density 
(PDD) and ρcu is the resistivity of copper. The JSref 
and 2tS are considered as 10 A/mm2 and 10 mm 
respectively. Specific load capacities are calculated 
for different value of power dissipation densities.  
       There will be some percentage of iron in the 
stator disc to drive the most of the flux. The optimum 
value of the fraction of copper in the stator disc is 
found to be 0.7 in this case. This fraction is denoted 
by s. The current density for any stator thickness in 
the analysis is calculated as 

S
S t

J
cu2

s x PDD Reference
ρ

=
            (11) 

where s is the fraction of the copper in the stator disc 
and tS is the half of the stator thickness.  
        In the present analysis of this class of bearing 
the design parameters are power dissipation density, 
airgap thickness, inside radius of the stator/or rotor, 
outside radius of the stator/or rotor, stator disc 
thickness, rotor disc thickness, fraction of copper in 
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the stator disc and the number of pole pairs in the 
rotor/or stator disc.                     
        Specific load capacity is analysed for different 
combinations of the design parameters covering a 
wide range of space for all the parameters. The 
optimum value of the fraction of copper in the stator 
disc is found to be 0.7 and the specific load capacity 
is optimum once the number of rotor pole pairs 
reaches 50. Specific load capacities are shown in 
figure 7(a) and 7(b) with varying stator and rotor disc 
thickness, when NR = 50 (NS = 51) and S = 0.7. The 
airgap thickness is 0.4 mm and power dissipation 
density is equal to the reference PDD. The maximum 
specific load capacity in this case is 23:1. 

 

(a) 

 

(b) 
FIGURE 8(a) and 8(b): Optimum region of specific 
load capacity.  Airgap thickness, tA = 0.4 mm   NR = 
50, NS = 51, S (fraction of Cu in the Stator Disc) = 
0.7, RI = 160 mm, RO = 200 mm. 
 
     For the same airgap, the number of rotor pole pairs 
and the fraction of copper in the stator disc, figure 
8(a) and 8(b) show the variation of specific load 
capacity with stator and rotor disc thickness. The 
power dissipation density is equal to 10 times the 
reference PDD for this case. The maximum specific 
load capacity in this case is 66:1.  
     The specific load capacity versus power 
dissipation density is shown in figure 9.  
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FIGURE 9: Variation of specific load capacity with 
power dissipation density for different airgap 
thicknesses 
 
CONCLUSIONS 
       This paper describes the magnetic design of a 
Multi-Pole, Axial-MMF, Radial magnetic bearing. It 
investigates the optimum designs of class I, where 
rotor and stator discs are made up of permanent 
magnet and class II, where rotor is made of 
permanent and stator is wound, for maximum specific 
load capacity. Work is ongoing but the indications so 
far are that SLC values will be low. 
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