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ABSTRACT
This paper presents an improved identification
scheme of AMB rotor systems including sensor and
actuator dynamics. First, this paper discusses the
necessity and synthesis of the fictitious proportional
feedback gain (FPFG). The identification error due
to over-parametrization of the MIMO system via
a SIMO modeling is minimized using an optimal
FPFG. Second, the identification procedure becomes
simple and efficient through estimating system poles
and zeros simultaneously. Third, more improve-
ment in the identification is achieved through sep-
arate parameterization of the additional dynamics.
The identification performance is verified with sev-
eral simulations. Finally, the proposed identifica-
tion scheme is compared with previous identification
methods using experimental data.

INTRODUCTION
AMB systems have been widely applied to exploit
their unique advantages, including non-contact,
lubricant-free operation, high rotational speed, and
flexibility of the bearing characteristics. AMB rotor
systems always require feedback control of the mag-
netic force. However, the dependence of magnetic
force on the control variables is intrinsically nonlin-
ear so an approximate linearized model, valid near
an operating point, is used in design of the associ-
ated controller. As a result of the approximate na-
ture of the model, identification of the actual system
is essential for a high performance controller.

Figure 1 shows the SISO pole-zero map of a flex-
ible AMB rotor system. The flexible AMB rotor
system contains three different dynamics: additional
dynamics (real poles and zeros far from the imagi-
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Figure 1: Pole-zero map of a AMB rotor system

nary axis, typically due to AMB electronics), rigid
modes (real poles symmetric to the imaginary axis
due to magnetic effects) and flexible modes (lightly
damped complex poles and zeros symmetric to the
real axis, primarily due to structural flexibility). In
particular, it is very difficult to identify rigid and
flexible modes together when the first flexible mode
is low in frequency. Moreover, the additional dynam-
ics makes it more difficult to identify rigid modes.

Gahler et al. [1] introduced a FPFG and iden-
tified poles and zeroes of the closed-loop system se-
quentially; the resulting SIMO model were then con-
verted to a MIMO model via singular value decom-
position (SVD). However, the paper provided no dis-
cussion of criteria for choosing the FPFG that might
affect identification results significantly. Moreover,
it is very hard to obtain a good match in low fre-
quency responses (especially off-diagonal elements)
since some individual good curve fittings are lost
due to the SVD procedure. Ahn et al. [2] per-
formed identification of a MIMO AMB rigid rotor
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system through a MIMO parametrization. Although
separate identification procedure revealed that addi-
tional dynamics greatly affect the identification per-
formance, this method is is only effective for rela-
tively rigid rotors where the rigid modes are easily
separated from flexible modes. In addition, there
was no clear criterion in selecting the frequency point
where rigid modes are split from flexible modes.

This paper presents an improved identification
scheme for AMB rotor systems considering sensor
and actuator dynamics. The proposed identifica-
tion scheme has the following advantages: First, the
identification error due to over-parametrization of
the MIMO system via a SIMO modeling is mini-
mized using an optimal FPFG. Second, the iden-
tification procedure becomes simple and efficient
through estimating system poles and zeros simulta-
neously. Third, the additional dynamics are param-
eterized separately considering their characteristics.

IDENTIFICATION OF AN AMB ROTOR
SYSTEM
Frequency domain MIMO identification
A commonly used frequency domain identification
procedure for a MIMO system is as follows: (a)
measurement of ETFE (empirical transfer function
estimate) from input and output signals during op-
eration (b) estimation of SIMO polynomial transfer
function through curve-fitting [3, 4]. (c) The desired
order model is obtained with SVD based on prior
knowledge of the system [1].

The SIMO model of m×n transfer function matrix
for the second procedure is shown in (1). The resid-
ual error depends on the selection of model order
and the order is generally chosen as the lowest order
without significant degradation of residual error.

G(s) =
n∑

r=1

Rr

s2 + 2δrωrs + ω2
r

=
[N(s)]
d(s)

(1)

Here the dyadic product Rr is ϕr · ψT
r and [N(s)] is

numerator polynomial matrix.
It is necessary to transform the curve-fitted SIMO

model into a MIMO model. The residual Rr can be
calculated approximately from

Rr ' (s2+2δrωrs+ω2
r)·G(s)|

s=−δrωr±jωr

√
1−δ2

r
(2)

The rank of the calculated residual is usually
not ”1” because of the over-parametrization of the
MIMO system via the SIMO model. Therefore, the
residual matrix of the rth mode R

(n)
r whose rank is

usually n is truncated as optimal rank one approxi-
mation R

(1)
r through SVD as shown in (3).

R(n)
r = Ur · Σr · V T

r ≈ R(1)
r = ur,1 · σr,1 · vr,1 (3)

Here, Ur and Vr are orthogonal matrices with
columns ur,i, vr,i. Σr is diagonal and contains the
singular values σr,i with descending magnitudes.

Necessity of a FPFG
Role of a FPFG is explained using a simple SISO
AMB system that consists of one rigid and one flex-
ible modes. The transfer function of the SISO AMB
system G(s) excluding the additional dynamics can
be expressed by the pole and residual of each mode
as shown in (4).

G(s) =
R1

s2 + 2ds− p2
+

R2

s2 + 2δωs + ω2
(4)

The FPFG is a linear transformation that turns
real poles of the rigid modes into complex conjugate
poles like flexible modes, which boosts visibility of
the rigid modes in the FRF[1]. The characteristic
equation of the closed-loop system Gcl produced by
the FPFG, K, is given by

(s2+2ds−p2+R1K)(s2+2δωs+ω2+R2K)−R1R2K
2 = 0

(5)
The pole movement can be described using the

sign of the characteristic equation at zero frequency.
The characteristic equation at zero frequency can be
simplified as

K(
R1

p2
− R2

ω2
)− 1 = 0 (6)

If the equation (6) is less than zero, the closed-loop
system still has real poles of the rigid mode. As the
FPFG increases, the real poles of closed-loop system
approach to the imaginary axis. Then, if the equa-
tion (6) is an equality, the poles of the rigid mode are
located at the origin (assuming that d = 0), which is
the transitional point from real to complex conjugate
poles. In this condition, the characteristic equation
is singular and a pole-zero cancellation doesn’t hap-
pen. Therefore, the numerical condition becomes
poor and the calculation result is not accurate any
more. When the left hand side of the equation (6)
becomes less than zero due to increase of the FPFG,
the real poles of the rigid mode are converted into
complex conjugate poles. Although the visibility of
the poles of the rigid modes poles is improved as the
FPFG increases, the complex conjugate poles of the
flexible mode are also affected by the FPFG.
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Over-parametrization error
Residuals of the curve-fitted SIMO model are ap-
proximated through the maximum singular value.
The SVD procedure reveals identification er-
ror of the curve-fitting procedure due to over-
parametrization of the MIMO system via a SIMO
system. This over-parametrization error is the main
identification error considering the accuracy of the
curve-fitting procedure.

Additional dynamics
The measured ETFE of an AMB rotor system in-
cludes not only rigid and flexible modes but also
the additional dynamics including sensor, actua-
tors, and discretization. These additional dynam-
ics have different characteristics from rigid and flex-
ible modes, that is, they affect all transfer function
matrix equally. Therefore, big error could occur
by under-parameterizing these additional dynamics
during SVD procedure.

NEW IDENTIFICATION SCHEME
Synthesis of optimal FPFG
Minimization of over-parametrization error
The FPFG transforms the real poles of rigid modes
into complex conjugate poles in order to improve the
visibility of the rigid modes. However, the identifi-
cation error of still remains and finally results in the
over-parametrization error during the SVD proce-
dure. In particular, the responses of rigid modes at
low frequency are very big and their identification
errors are considerable.

The idea is as follows. First, responses at zero fre-
quency are used to represent the rigid modes without
the effect of the both additional dynamics and flexi-
ble modes. Second, the FPFG is determined to min-
imize the over-parameterization error of rigid modes
due to SIMO modeling. The over-parameterization
errorcan be minimized through reducing the rank
one approximation error of the virtual closed-loop
response at zero frequency. However, the relative
rank one approximation error can be represented by
σ2(Gcl)/σ1(Gcl), which is the inverse of the condi-
tion number if rank(Gcl) is 2. Therefore, as the rel-
ative rank one approximation error decreases, the
condition number increases and the identification er-
ror increases significantly due to ill-conditioned de-
nominator matrix.

Cost function
A trade-off between conflicted two requirements is
inevitable in choosing an apropos FPFG: FPFG
should be close to the transitional point in order

both to minimize the relative optimal rank one ap-
proximation error and to reduce the changes of the
poles of the flexible modes. Condition number
of the denominator at zero frequency should
not be too large in order to maintain good numeri-
cal condition. Therefore, a cost function is proposed
as follows considering the points above. An opti-
mal gain can be determined through a simple search
method near the transitional point.

J = arg min
k

[
k

kt
+

(
cond(D(0, kt · I))
cond(D(0, k · I))

)m]
(|k| > |kt|)

(7)
Here, kt is the largest real scalar value to satisfy
det(D(0, k · I)) = det(I + GR(0) · kt · I) = 0 and m
is a weighting power for the numerical condition.

The kt can be computed through solving a simple
second order equation, det(ĜR(0)) · k2

t + tr(ĜR(0)) ·
kt +1 = 0 if GR=real(G). In addition, the condition
number is not infinite even at the transitional point
since the kt is computed ignoring the imaginary part.

Parametrization of the additional dynamics
Since the additional dynamics affects all transfer
function matrix equally, the additional dynamics are
separated and parameterized by

Gtotal(s) = Gadd(s) ·G(s) (8)

Here, Gadd(s) is a transfer function of additional dy-
namics, and G(s) denotes a MIMO AMB rotor sys-
tem of rigid and flexible modes.

The order of the Gadd is automatically determined
since the order is generally chosen as the lowest order
without significant degradation of residual error dur-
ing the curve-fitting procedure. After curve-fitting
of a SIMO model, poles and zeroes of the additional
dynamics can be easily distinguished from those of
rigid and flexible modes, since their poles and zeros
are far from the imaginary axis.

Robust estimation of zero frequency response
The zero frequency response should be estimated
accurately because it directly affects identification
quality. Zero frequency response is estimated us-
ing non-zero frequency responses near zero frequency
since zero frequency response cannot be measured
directly. During the estimation of the zero fre-
quency response, noise effect can be reduced through
a proper weighting function like (9).

Ĝ(ω0) =
1∑
k wk

∑

k

wkG(ωk) (9)
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Figure 2: Schematic of the flexible rotor system
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Figure 3: The Proposed cost function values

Here, G(ω0) is the response in zero frequency, wk =
Wγ(ωk−ω0) that is a modified frequency for window
function Wγ .

SIMULATION
The performance of the proposed identification
scheme is tested through simulations of a theoret-
ical flexible AMB rotor system. The flexible AMB
rotor system consists of two AMBs, two sensors and
a rotor as shown in Fig. 2. The frequency responses
including white noise are produced to mimic the real
situation closely. Measured frequency response of a
test rig is used for actuator while a theoretical model
is used for sensor. In addition, the discretization ef-
fect is ignored.

Cost function values are calculated with increasing
the FPFG and the weighting power m, as shown in
Fig. 3. The optimal point can be adjusted through
changing the weighting power considering the nu-
merical condition.

Identification of the flexible AMB rotor system
is performed using the proposed scheme and op-
timal FPFG. Then, relative identification error at
each step are shown in Fig.4 (a). The over-
parametrization error after the SVD procedure is
still much bigger than the error after the curve-
fitting procedure although the optimal gain mini-
mizes the over-parametrization error. Relative iden-
tification errors are calculated with various FPFG
and SNR. The optimal FPFG doesn’t change regard-
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Figure 4: Simulation results

less of the SNR values as shown in Fig. 4 (b). There
are two peaks of identification errors, which indi-
cates two transitional points where two real poles of
rigid modes are moved into the origin, respectively.

COMPARISON WITH PREVIOUS METH-
ODS USING EXPERIMENTAL DATA
There are two previous identification methods for
AMB rotor systems: Gahler’s and Ahn’s meth-
ods. The proposed identification scheme is com-
pared with two previous methods using measured
frequency responses. Frequency responses of AMB
rigid and flexible rotor systems are used to repre-
sent two kinds of typical AMB rotor systems. In
addition, both cases of including and excluding the
additional dynamics are identified to investigate the
effect of the additional dynamics. The identification
performances are evaluated using two indies: abso-
lute and relative errors as follows.

EABS = ||G−Ĝ||F , EREL = ||G−Ĝ||F /||G||F (10)

Three identification methods are summarized in
Fig. 5. As shown in Fig. 5, the proposed iden-
tification scheme minimizes the SVD error through
both FPFG synthesis and separate parametrization
of the additional dynamics, and also simplifies the
identification procedure by identifying the system
poles and zeros at a time. The order of the identified
model is different depending on identification meth-
ods and the additional dynamics. In case of Gahler’s
method, the FPFG is selected through trial and er-
ror since the identification error depends on not only
identification of poles, but also identification of ze-
roes.

Flexible AMB rotor system
Since Ahn’s method cannot be applied to a flexi-
ble AMB rotor system, the proposed scheme is com-
pared only with Gahler’s method. Figure 6 shows
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Figure 6: Flexible rotor system

the AMB flexible rotor system. The test rig consists
of two AMBs, two cylindrical capacitive sensors and
an flexible rotor, and its specifications are the same
as the simulation model. Frequency responses are es-
timated from closed-loop responses after the system
is stabilized with a PID control (10kHz sampling)
[2]. Single sinusoidal excitation is performed from
1 Hz to 599 Hz by 2 Hz step. Gyroscopic effect is
ignored since the frequency responses are measured
without rotation.

Excluding the additional dynamics
The additional dynamics are identified and sepa-
rated from the measured frequency responses. Then,
identifications are performed using the proposed
scheme and Gahler’s method. The order of the iden-
tified model is 10 for both methods. Relative iden-
tification errors are shown in Fig. 7 (a) and sum of
the identification errors are summarized in Table 1.
As shown in Fig. 7 (a) and Table 1, the proposed
scheme shows better results than Gahler’s method.
In case of Gahler’s method, system poles are iden-
tified using determinant of frequency responses and
then system zeroes are identified using identified sys-
tem poles. Therefore, it is very hard to minimize the
identification error through an optimization.

Including the additional dynamics
First, the system with a small additional dynamics
is identified after separating the discretization effect.
Then, the system that includes discretization effect
is identified in order to compare identification perfor-
mance in case of a large additional dynamics. In case
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Figure 7: Identification errors of the flexible rotor

Table 1: Identification errors of the flexible rotor
Error Add. dyn. New (D.E.) Gahler
Rel. X 25.37 39.97

O 26.46(47.67) 49.30
Abs. X 9.28 10.64

O 11.40(26.63) 16.92

of excluding the discretization effect, identified mod-
els with the proposed scheme and Gahler’s method
are 16th and 10th order, respectively. The identified
model order with Gahler’s method is low since the
SVD procedure is applied to the additional dynamics
and the additional dynamics is under-parameterized.
In case of including the discretization effect, identi-
fied model with the proposed scheme and Gahler’s
method are 20th and 12th order, respectively.

Relative identification errors are shown in Fig. 7
(b) and sum of the errors are shown in Table 1
(D.E. denotes including discretization effect). The
proposed scheme shows much smaller identification
error than Gahler’s method. The identification er-
rors in case of including additional dynamics are
larger than those in case of excluding additional dy-
namics. In particular, identification errors increase
much in case of Gahler’s method due to under-
parameterization error of the additional dynamics.

AMB rigid rotor system
In case of AMB rigid rotor system, the rigid modes
can be separated from flexible modes compared with
the flexible AMB rotor system and Ahn’s method
can be applied. Therefore, the proposed scheme is
compared with Gahler’s and Ahn’s method using
measured frequency responses of the AMB rigid ro-
tor system. The AMB rigid rotor system consists of
two AMB and three cylindrical capacitive sensors.
The frequency responses of the paper [2] are used
for the comparison of identification methods.
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Figure 8: Identification errors of the rigid rotor

Table 2: Identification errors of the rigid rotor
Error Add. dyn. New (D.E.) Ahn Gahler
Rel. X 135.82 221.31 191.19

O 88.46(129.75) 221.31 584.83
Abs. X 20.90 23.78 25.5

O 17.19(24.04) 20.48 73.62

Excluding the additional dynamics
The additional dynamics are identified and sepa-
rated from the measured frequency responses. Then,
identifications are performed with three identifica-
tion methods. The order of the identified model is
8 for three methods. Relative identification errors
are shown in Fig. 8 (a) and sum of the identifica-
tion errors are summarized in Table 2. The proposed
scheme shows better results than Gahler’s and Ahn’s
methods. Although Ahn’s method focuses on the
rigid modes and shows good match in the low fre-
quency, frequency responses at high frequency don’t
match very well.

Including the additional dynamics
In case of excluding the discretization effect, iden-
tified models with the proposed scheme, Gahler’s
method and Ahn’s method are 20th, 12th and 22nd

order, respectively. Relative identification errors are
shown in Fig. 8 (b) and the sums of the errors are
shown in Table 2. The proposed scheme shows much
smaller identification error than other two meth-
ods. The absolute identification errors including ad-
ditional dynamics decrease compared with those ex-
cluding additional dynamics since responses in high
frequency, where most identification errors appear,
decrease due to the additional dynamics. Also, in
case of including the discretization effect, the iden-
tification errors increase since the uncertainty in es-
timating the additional dynamics becomes large as
the effect of the additional dynamics becomes large.

CONCLUSION
This paper presents an improved identification
scheme of AMB rotor systems considering sensor and
actuator dynamics. First, this paper discussed the
necessity and a selection criterion of the FPFG. The
identification error due to over-parametrization of
the MIMO system via a SIMO modeling was min-
imized using an optimal FPFG. Second, identifica-
tion procedure became simple and efficient through
estimating all system poles and zeros simultaneously.
Third, more improvement was achieved through
separate parametrization of the additional dynam-
ics. The performance of the proposed identification
scheme was verified through severla simulations. Fi-
nally, the proposed scheme is compared with previ-
ous identification methods using experimental data.
A great improvement in model quality and large
amount of time saving can be achieved with the pro-
posed method.
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