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ABSTRACT
This paper proposes a novel cylindrical capacitive
sensor (CCS) for both radial and axial motion mea-
surement. The proposed CCS has almost the same
geometric configuration as the conventional CCS
and the unused axial area of the CCS is utilized to
measure the axial motion of a rotor, which can re-
duce complexity of the hardware configuration and
offer more degree of freedom in design. First, a the-
oretical model of the proposed CCS considering the
nonlinear characteristic of the CCS is derived. Based
on the derived theoretical model, a simple compen-
sation method to decouple the radial and axial mo-
tion measurements is proposed. In addition, error
analysis is performed and a design rule is proposed
to guarantee the same accuracy in measuring both
radial and axial motion. Finally, a test rig and elec-
tronics for the proposed CCS are built and the per-
formances of the proposed CCS is verified experi-
mentally.

INTRODUCTION
A fully levitated five-axis AMB system usually
needs independent four radial and one axial sensors.
Hence, enough axial space for the radial and axial
sensors is needed, which lower natural frequency of
the AMB rotor. Therefore, a conical sensor can be
used to reduce system complexity and improve the
system dynamic characteristics. However, the coni-
cal sensor may cause a coupling problem in measur-
ing the radial and thrust motion, and it is not easy
to install and calibrate the conical sensor due to its
geometry.

The probe-type displacement sensors most widely
used are very sensitive to the surface quality of a
rotor. They require additional algorithms to detect
and compensate for the unnecessary signal induced
by geometric errors. As an alternative to probe-type
sensors, cylindrical capacitive sensor (CCS) was de-
veloped and applied to several applications since the
CCS has low sensitivity to geometric errors and high

resolution with large sensing area. It was verified
that the CCS has much better performance in reject-
ing the geometric errors of a rotor than probe-type
sensors [1] and can minimize the effects of geometric
errors by changing the sensor angular size [2].

This paper proposes a novel CCS for both radial
and axial motion measurement, which afford more
compact design and system complexity reduction.
A theoretical model of the new CCS considering the
nonlinear characteristic of the CCS is derived and
several analyses are performed. Based on the derived
theoretical model, a simple compensation method to
decouple the radial and axial motion measurements
is proposed. In addition, error analysis of the pro-
posed CCS is performed and a design rule is devel-
oped to guarantee the same accuracy in both radial
and axial motion measurements. Finally, a test rig
and electronics for the proposed CCS are built and
the performances of the proposed CCS is verified
experimentally. The proposed CCS can reduce com-
plexity of the hardware configuration and offer more
degree of freedom in system design.

CCS
Capacitive sensors are widely used in short-range
ultra-precision and control applications because they
have higher resolution than other type of sensors.
The existing 4-segment CCS maximizes its sensing
area to achieve as high resolution as possible, as
shown in Fig. 1 (a). The rotor displacements can be
approximated with Eq. (1) using the capacitances
of four sensing electrodes (C1, C2, C3, C4).

XCCS4 = gain(C1 + C4 − C2 + C3),
YCCS4 = gain(C1 + C2 − C3 − C4) (1)

Although the 4-segment CCS has a high resolu-
tion, it is sensitive to odd harmonic errors, espe-
cially the 3rd harmonic component in geometric er-
rors of a rotor. To overcome this shortcoming of
the 4-segment CCS, Jeon et al. [2] proposed a new
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(a) 4-segment CCS (b) 8-segment CCS

Figure 1: The CCSs

configuration of CCS, that is, the 8-segment CCS,
which consists of four shared and four unshared sen-
sor segments, as shown in Fig. 1 (b). Total angular
size 2ζ of a sensor unit is the sum of two shared and
one unshared sensor segments.

2ζ = 2SS + SU (2)

Here SS and SU are the angular sizes of the shared
and unshared segments, respectively.

The measured rotor displacements can be approx-
imated by Eq. (3).

XCCS8 = gain(C8 + C1 + C2 − C4 − C5 − C6),
YCCS8 = gain(C2 + C3 + C4 − C6 − C7 − C8) (3)

The 8-segment CCS can possess an arbitrary an-
gular size of the sensor unit through adjusting the
angular sizes of the sensor segments and a proper an-
gular size of a sensor unit can minimize the effects
of geometric errors.

A NOVEL CCS FOR BOTH RADIAL AND
AXIAL MOTION MEASUREMENT
Figure 2 (a) shows the cross-section of a CCS and
there is unused axial area of the CCS. The idea of the
novel CCS is that the axial area of the CCS can be
used to measure axial motion as shown in Fig. 2 (b).
If this idea is successfully implemented, more com-
pact design and system complexity reduction can be
achieved through removing axial sensor.

In case of the proposed CCS, capacitance of each
electrode can be divided into two terms: axial and
radial capacitances such as Eq. (4). Radial displace-
ments can be approximated using the same equa-
tions as Eqs. (1) and (3) since the capacitances of
the axial sensing area Cia are removed due to differ-
ential configuration of the CCS.

Unused axial area

(a) Cross-section of a
CCS

Radial
motion

Novel CCS

X

Y
Z

Axial
motion

Radial
motion

Novel CCS

X

Y
Z

Axial
motion

(b) the propose
CCS

Figure 2: Idea of the proposed CCS

Ci = Cir + Cia (4)

Here, Cia is capacitance of the axial area and Cir is
capacitance of the radial area.

If the radial thickness of the sensing electrode is t
and the axial gap is δa, the sum of the capacitance
of axial area can be expressed by

∑

i

Cia = ε
2π(b + t/2)t

δa
(5)

Therefore, the axial motion may be expressed by the
sum of all capacities like 6), if the sum of capacitance
of radial area Cir would be constant. However, as
the rotor goes far from the center of the CCS, the
sum of capacitances of the radial area (total capaci-
tance) varies significantly according to the radial po-
sition of the rotor. It is necessary to investigate the
radial position dependency of the total capacitance.

1/Z =
∑

i

Ci − Coffset (6)

Here, Coffset is the capacity due to raidal and stray
capacitances.

The small capacitance of radial area of the CCS
can be approximated as [1]

∆C ' εbw

δ − α cos(θ − β)
∆θ (7)

Here, b is sensor radius, w is sensor axial width, δ
is radial gap between the sensor and the rotor, α is
the eccentricity of rotor and β is the phase angle of
the rotor eccentricity.

Nonlinear dependency of the sum of all capacities
on the radial position of the rotor can be calculated
through integrating (7) from 0 to 2π using integral
table [3].
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C0...2π =
∫ 2π

0

∆C =
2πεbw

δ

1√
1− (α

δ )2
(8)

As the rotor goes close to the CCS, the nonlin-
ear characteristic becomes severe. In case of AMB,
clearance of a back-up bearing is assumed as 75%
of the nominal clearance and the total capacitance
varies over 150%. Therefore, we cannot use the sum
of capacitances directly to represent the axial mo-
tion.

To overcome the coupling between radial and axial
measurements of the CCS, a simple compensation
method using the measured X and Y displacements
of the CCS will be presented later. Therefore, it is
necessary to analyze the nonlinear characteristic of
radial motion measurement of the CCS.

Nonlinear analysis of the CCS
Measured displacement in X direction using a CCS
of angular size 2 ξ can be expressed as

XCCS =
∫ ξ

−ξ

∆C −
∫ π+ξ

π−ξ

∆C (9)

The small capacitance (7) can be expressed using
power series by

∆C ' εbw

δ

∞∑
n=0

(α

δ
cos(θ − β)

)n

∆θ (10)

Substituting Eq. (10) into Eq. (9) and simplify-
ing, the solution exist only if n = even.

XCCS =
2εbw

δ

∫ ξ

−ξ

∞∑

l=0

(α

δ

)2l+1

cos2l+1(θ − β)∆θ

(11)
Using following trigonal formula Eq. (12) and sim-

plifying the equations, the resulting measured dis-
placement of the rotor can be expressed as Eq. (13).

cos2l+1 ϑ =
1
4l

l∑

k=0

(
2l + 1

k

)
cos (2l + 1− 2k)ϑ

(12)

XCCS = 8
εbw

δ

∞∑

l=0

( α

2δ

)2l+1 l∑

k=0

(
2l + 1

k

)

sin (2l + 1− 2k)ξ
2l + 1− 2k

cos (2l + 1− 2k)β (13)

The biggest nonlinear harmonic error is the third
harmonics. However, if ξ is 60o, the third harmonic

phase error is removed, which means that the 8-
segment CCS has minimal harmonic errors. In ad-
dition, the nonlinear gain of the radial motion mea-
surement of the CCS can be evaluated through sum-
ming the first harmonic terms.

X1
CCS = 8

εbw

δ

∞∑

l=0

( α

2δ

)2l+1
(

2l + 1
l

)
sin ξ cosβ

(14)
Equation (14) can be simplified using a power se-

ries (15) and the resulting nonlinearity of a CCS can
be expressed as (16).

1√
1− x

= 1 +
1
2
x +

1 · 3
2 · 4x2 +

1 · 3 · 5
2 · 4 · 6x3 + · · ·

=
∞∑

k=0

(
2k

k

)(x

4

)k

= 1 +
∞∑

k=0

(
2k + 1

k

)
1

22k+1
xk+1 (15)

X1
CCS = 8

εbw

δ

δ

α

∞∑

l=0

(α

δ

)2l+2 1
22l+1

(
2l + 1

l

)
sin ξ cosβ

= 8
εbw

δ

δ

α

( 1√
1− (

α
δ

)2
− 1

)
sin ξ cosβ (16)

Compensation method
Additive nonlinearity of total radial capacitance can
be expressed by

C − Cα=0 =
2πεbw

δ

( 1√
1− (α

δ )2
− 1

)
(17)

The idea of the compensation method is that the
additive nonlinearity is minimized using the mea-
sured displacement such as

1/Z =
∑

i

Ci − at

√
X2

CCS + Y 2
CCS − Coffset (18)

Here, at is a compensation gain, and XCCS and
YCCS are measured displacement with the CCS.

The normalized sum of radial capacitance and the
measured normalized displacement are shown in Fig
3. In addition, Figure 3 shows the difference between
the sum of radial capacitance and the measured dis-
placement. Considering Eqs. (16) and (19), the op-
timal compensation gain a can be determined by Eq.
(19).

min
a

∣∣∣
(a

x
− 1

)( 1√
1− x2

− 1
)∣∣∣

1
(19)
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Figure 3: Sum of radial capacitances and measured
displacement

Here, x is α
δ , 0 ≤ x ≤ xe, xe < 1 and a =

4at sin ξ/pi.
Figure 4 shows optimal compensation gains a and

with increasing end points xe. The optimal compen-
sation gain is slightly smaller than the end point. In
addition, the cost function values are compared in
case the compensation gain is optimal and xe.

If the rotor is located near the center of the CCS
and the compensation error is very small, the pro-
posed compensation equation (18) is too complex
and can be simplified by

1/Z =
∑

i

Ci−am(|XCCS |+|YCCS |)−Coffset (20)

In the compensation equation above, the eccen-
tricity is approximated as the absolute sum of mea-
sured X and Y displacement. However, we have an-
other error source and need to modify the optimal
compensation gain into am. The maximum error ap-
pears in both x and y axis while the minimum error
does in both y = x and y = −x. The gain ar can
be determined through equalizing the minimum and
minimum errors such as
√

2 ar − 1(maximum) = 1− ar(minimum) (21)

The approximation gain ar is 0.8284 (2/(1 +
√

2))
and the relative approximation error is 17.16%.

The cost function should be changed considering
the the approximation error such as

min
a∗

∣∣∣
( a∗

x
−1

)( 1√
1− x2

−1
)∣∣∣

1
+

a∗(1− ar)
x

( 1√
1− x2

−1
)

(22)

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

End point x
e

O
pt

im
al

 c
om

pe
ns

at
io

n 
ga

in

0 0.5 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

End point x
e

C
os

t f
un

ct
io

n

Optimal gain a
Modi. optimal gain a*

a=x
e

Optimal gain a
Modi. optimal gain a*

a=x
e

Figure 4: Normalized nonlinearity of the sum of ra-
dial capacitances and measured displacement

Here, a∗ is am/ar.
Through the same procedure as Eq. (19), mod-

ified optimal compensation gain a∗ and compensa-
tion error are calculated and shown in Fig. 4. Al-
though the compensation error using modified com-
pensation equation (20) becomes large as the rotor
approaches the CCS, the compensation error is not
too severe within α/δ < 0.8.

Error analysis
There are two kinds of intrinsic errors in axial mea-
surement of the proposed CCS: nonlinear harmonic
error and compensation error. These two errors re-
sult in nonlinearity error of the axial measurement.
Figure 5 shows comparison of the biggest normalized
nonlinear harmonic error and the normalized com-
pensation errors. The compensation error is much
bigger than the nonlinear harmonic errors and the
nonlinear harmonic error is ignored in the analysis.

The compensation error results in nonlinear error
in axial measurement. If the Ecomp is the maximum
cost function of (18) or (20), the axial measurement
can be simplified by

1/Z =
2πεbw

δ
Ecomp +

2πεt(b + t/2)
δa

=
2πεbw

δ

(
Ecomp +

t

w

δ

δa
(1 +

t

2b
)
)

(23)

The axial measurement error depends on the CCS
geometry including radial thickness, axial width, ax-
ial and radial gap. Since t/2b is very small (<<0.1),
nonlinear error depends on the ratio of the radial
thickness to the axial width t/w. Especially, the
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Figure 6: Axial measurement error (α/δ ≤ 0.75)

error becomes large as the gap ratio δ/δa becomes
small, that is, the axial sensing area is farthest.

The relative measured error can be calculated by

REaxial = 100
(
1−

t
w

δ
δa
|min

Ecomp + t
w

δ
δa
|min

)
% (24)

If the normalized eccentricity varies α/δ up to 0.75
and the normalized gap ratio varies from 0.25 to 0.75
(usual AMB application), the maximum relative er-
ror with various t/w and measured axial displace-
ment at t/w = 0.4 are shown in Fig. .

The rotor radial motion is maintained near center
position after the levitation and the normalized ec-
centricity typically doesn’t reach 0.75. If the normal-
ized eccentricity varies up to 0.25 and the normal-
ized gap ratio varies from 0.4 to 0.6 (well-controlled
AMB system and precision measurement), the max-
imum relative error with various t/w and measured
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Figure 7: Axial measurement error (α/δ ≤ 0.25)

displacement at t/w = 0.4 are shown in Fig. 7. The
measurement error is very small and the axial mo-
tion is measured accurately.

DESIGN RULE
The design principle should be different according
to applications and it is a natural thought that the
errors of radial and axial measurements are made
same. Therefore, it is necessary to evaluate the ra-
dial motion measurement error. The nonlinear char-
acteristic of the radial measurement is expressed in
(16) and the approximated gain of (16) is ’1’. The
nonlinear error of the radial measurement can be
expressed by

REradial = 100 ·
( 1

x2

( 1√
1− x2

− 1
)
− 1

)
% (25)

Here, x is α/δ.
The relative error also increases significantly as

the normalized eccentricity increases, as shown in
Fig. 8. The relative nonlinear error is about 5%
within α/δ = 0.25 and is about 82% within α/δ =
0.75).

In order to equalize the radial measurement error
(24) and the axial measurement error (25), the ratio
of the radial thickness to the axial width t/w should
satisfy

t

w
=

Ecomp

(
x
)(

2− 1
x2

(
1√

1−x2 − 1
))

δ
δa
|min

(
1
x2

(
1√

1−x2 − 1
)
− 1

) (26)

Here, x is α/δ.
If the minimum gap ratio δ/δa is less than 0.75,

the t/w may be less than 0.1, as shown in Figs. and
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Figure 9: Circuit implementation

7, which means the proposed CCS can measure the
axial motion in spite of the small radial thickness
within comparable accuracy.

CIRCUIT IMPLEMENTATION AND CAL-
IBRATION
A circuit block diagram for the proposed CCS is
shown in Fig. 9. The proposed CCS use the same
circuit as the existing CCS in the radial measure-
ment: capacitance detecting circuit, difference am-
plifier and gain & offset adjustment. The nonlinear
relationship between capacitance and displacement
is approximated using simple difference amplifier. In
addition, the center of the CCS is set electrically
through making the CCS radial output zero with-
out a target using the offset adjustment circuit.

On the other hand, the axial measurement circuit
consists of three stage: sum & offset1, difference &
offset and inverse, gain & offset3. First, all capaci-
tances are summed and stray capacitance effect are
removed though making the first stage output zero
without a target using offset1 circuit. Second, the
radial dependency is compensated through subtract-
ing the absolute sum of measured radial measure-
ments. In addition, the sum of radial capacitance
is removed through making the second stage output
zero with only radial target using offset2 circuit. Fi-

nally, the second stage output is inversed and the
output signal is adjusted.

The proposed CCS measures both radial and axial
motion. Therefore, the CCS should be calibrated
in both X, Y and Z directions at the same time.
The calibration procedure of the CCS is as follows:
First, offsets of the proposed CCS are set electrically
through making the some stage outputs zero with
or without a target. The sensor output is measured
moving an alternative target with the same diameter
as the rotor in both X, Y and Z direction. The
calibration results will be presented in conference
presentation.

CONCLUSION
This paper proposed a novel cylindrical capacitive
sensor (CCS) for both radial and axial motion mea-
surement. unused axial area of the CCS is adopted
to measure the axial motion of a rotor. Although
the radial motion of the rotor affects measurement
of the axial motion significantly due to the intrinsic
nonlinear characteristic of CCS, a simple compensa-
tion method to decouple the radial and axial motion
measurements is proposed. In addition, error anal-
ysis of the CCS is performed and a design rule is
developed to guarantee the same accuracy in mea-
suring both radial and axial motion measurements.
Finally, a test rig and electronics for the proposed
CCS are built and the performances of the proposed
CCS is verified experimentally. The proposed CCS
can reduce complexity of the hardware configuration
and offer more degree of freedom in design.
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