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ABSTRACT
This paper reports on an investigation of the control

of active magnetic bearings (AMB) in suspended rotor
systems. The AMB model is nonlinear inherently, and
parameter uncertainty has to be taken into considera-
tion for effective control design. For a lightly damped
flexible structure rotor, the closed-loop system stabil-
ity and performance are very sensitive to errors in the
natural frequencies, while the high speed spinning rotor
displays strong elastic characteristics and gyroscopic ef-
fects, which entail a linear parameter varying (LPV) sys-
tem model. The effective control system design is a chal-
lenge. To meet robust control objectives and to design
the controller in an LPV framework, we propose a robust
LPV control design based on convex optimization. The
overall LPV system model with uncertainty characteriza-
tions is formulated as a convex hull. A newH∞ analysis
condition which utilizes an extra variable on LMI condi-
tions is formulated. A parameter dependent Lyapunov
function for the closed loop convex hull can be con-
structed to greatly reduce controller design conservatism
and take advantage of the acceleration/deceleration in-
formation of the rotor.
Keywords: Magnetic bearings, LPV, LMI, control per-
formances

1 INTRODUCTION
This work is intended to develop a systematic de-

sign approach to the control of active magnetic bearings
(AMB) for levitated high speed rotor systems. Because
of the obvious advantages of AMB systems, such as high
reliability, high precision of the rotor position control,
low wear and tear, low maintenance, magnetic levitated
high speed rotor systems have been studied and utilized
in a wide range of industrial applications, such as energy
storage devices, machine tools, hybrid vehicles ([1]). We
carry out our design based on an AMB controls test rig
set up at the University of Virginia. It is a prototype of a
flywheel energy storage system, which consists of a flexi-
ble rotor equipped with a gyroscopic disk, a set of AMBs

to suspend the spinning rotor, a set of sensors, amplifiers
and a digital control platform. It is built to investigate the
control design and properties of high speed rotor systems
supported by AMBs. Fig. 1 shows the schematic of the
rotor system.

Figure 1: Schematic of the rotor

Experimental results show that the resonance of the
lightly damped flexible rotor and its supporting frame
can vary significantly in different operating conditions,
and the closed-loop system stability and performance are
very sensitive to the errors in the natural frequencies, de-
viation of the system parameters, etc. Moreover, the high
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speed spinning rotor displays strong elastic characteris-
tics and gyroscopic effects, which requires a linear pa-
rameter varying (LPV) system model. Effective control
system design is a challenge. Traditional PID orH∞
controller may have significant difficulties in the pres-
ence of system uncertainties and may not be able to sta-
bilize the rotor. A controller that can robustly stabilize
the system is essential.

Based on the structured uncertainty specifications,µ
synthesis is an effective tool to design a robust con-
troller. For our system, aµ controller has been designed
based on the linear time invariant (LTI) system model
and tested successfully for a small range of speed vari-
ations. The rotor speed is considered as an uncertainty
of the system. Theoretically, the LTIµ controller can
not guarantee the system performance in face of the time
varying rotor speed. Technically, theµ controller works
only when the rotor speed changes slowly ([2]).

Since the system model is in the LPV form with the
varying parameter (rotor speed) measured on line, it is
desirable to construct an LPV controller that can adjust
itself according to the online rotor speed measurement.
There have been various approaches to addressing the
LPV control.

One approach is the piecewiseµ-synthesis controller
([10]). The idea is to design severalµ controllers for
different rotor speed zones and switch between the LTI
controllers according to the current rotor speed. Bump-
less transfer techniques are used during the switch. This
heuristic approach is effective technically, but theoreti-
cally it cannot guarantee the global performance and sta-
bility.

Another approach is the traditional gain-scheduling
LPV control ([6]), which does not take into considera-
tion the structured uncertainty specifications, and is only
applicable to system design with measurable uncertain-
ties.

A modified and improved approach is the robust LPV
control with a single Lyapunov function specified for the
convex hull of the LPV plant ([11]). By convex charac-
terization, the robust control of the LPV system has been
reformulated as a convex optimization problem. How-
ever, because a single Lyapunov function has to be satis-
fied for all the vertices of the convex hull, the synthesis
method is conservative, especially when the number of
the vertices is large, or when the range of the varying pa-
rameter or parametric uncertainty is wide, or when the
varying parameter changes slowly.

To deal with these issues, several methods have been
proposed ([4, 5]). Generally, a parameter dependent Lya-
punov function is used instead of a single constant one.
However, the stability condition

P (p)A(p) + A(p)TP (p) + Ṗ (p) < 0, ∀p ∈ ∆,

then implies an infinite dimensional LMI set. And be-
cause of the coupled termP (p)A(p) + A(p)TP (p) in
the stability condition, we cannot simply substituteP (p)

with verticesPi andA(p) with Ai. A compromise and
practical method is to gridp, so that the problem is
tractable ([6, 8]). But this method cannot guarantee a
global solution to the problem, and the computational
load will dramatically increase with the increase of the
gridding density.

We propose a new analysis and synthesis method by
introducing an extra variable on the LMI conditions,
which can circumvent the coupled terms between the
Lyapunov function matrixP (p) and the time varying
system matrixA(p). Different Lyapunov functions can
be easily synthesized for all the vertices of the convex
hull. The conservatism is significantly reduced but the
system robust stability and performance are retained. A
parameter dependent Lyapunov function for the closed
loop convex hull can be constructed to take advantage
of the acceleration/deceleration information of the rotor.
Moreover, it can be extended to multi-objective control
and obtain good performance with less conservatism.

2 SYSTEM MODEL
Our AMB test rig plant model is mainly composed

of the following four components: AMBs, rotor, sensors
and amplifiers.

The AMB model describes the magnetic bearing force
acting upon the rotor as a function of the currents ap-
plied to the magnetic bearing coils and the air gap width
between the bearing and the rotor. Assuming negligible
bearing magnetic flux leakage, we can estimate the force
acting upon the rotor due to one magnetic bearing pole
as:

f = K
I2

g2
,

whereI is the coil current,g is the air gap width (dis-
tance between the rotor and the bearing pole), andK is
a constant factor determined by the cross-sectional area
of the pole, number of coil turns and permeability of
free space ([7]). To accommodate the LPV form of the
system model and facilitate our convex optimization ap-
proach, we first linearize the magnetic bearing model as
follows.

Figure 2: One axis of a magnetic bearing

Consider two opposed magnetic bearing poles work-
ing together to suspend the rotor along one axis of the
bearing as in Fig. 2.
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Let {
i1 = ib + i
i2 = ib − i

and

{
g1 = g0 − x
g2 = g0 + x.

Assuming smalli andx, we can linearize the force about
the nominal bias currentib and centered position (cen-
tered air gap width isg0 for both poles) as

F = kii + kxx, (1)

whereki is the current stiffness andkx is the displace-
ment stiffness of the AMB. The linear model is too sim-
ple. It is not sufficient for effective control design. To
address the nonlinear properties of the magnetic bearing
model, we use the LPV model to describe and compen-
sate the nonlinearity and uncertainty. The nonlinearity
can be modeled by an uncertain parameter set as

ki = δki ∈
[
ki, k̄i

]
,

kx = δkx
∈

[
kx, k̄x

]
,

whereki, k̄i, kx and k̄x are the extreme values of the
parameter set, i.e.,

F = δki
i + δkx

x, (2)

which is in an LPV form.
The sensor and amplifier models are also inherently

nonlinear. Similarly, we linearize them under normal op-
erational conditions and use the LPV model to describe
the difference between the linear terms and the nonlinear
terms while taking into consideration the model uncer-
tainties.

The rotor dynamic model, which is constructed by
FEM and tuned by modal testing and model reconcil-
iation, describes the displacement of the rotor (air gap
width variation) in response to the external force (mag-
netic bearing force). For the sake of effective control de-
sign and to cover the frequency of the rotor spin speed,
we model up to two flexible modes of the rotor and six
modes for the flexible supporting substructure, resulting
in a 36th order linear model. Due to the gyroscopic ef-
fects of the spinning rotor, the rotor dynamic properties
are linearly dependent upon the rotor speed, which also
entails an LPV model.

We stack up the four channel magnetic bearing set
model and integrate with the rotor dynamic, sensor and
amplifier models to obtain an overall LPV state space
model in the following form: ẋ = (Aδ(δ) + pAp)x + B1w + B2u,

z = C1x + D11w + D12u,
y = C2x + D21w,

(3)

wherep ∈ [p1, p2] = [pmin, pmax] is the rotor speed,
which can be measured online, in the form

Aδ(δ) = A0 + δ1A1 + · · ·+ δrAr

represents the nonlinearity and uncertainty of the sys-
tem. For our test rig system model, we formulate the
diagonalized nonlinearity and uncertainty structure with
r = 5, representing the natural frequency uncertainty
(δn), AMB displacement stiffness and current stiffness
nonlinearity (δkx and δki ), sensor and amplifier gain
nonlinearity (δsag) and substructural models uncertainty
(δsub).

3 H∞ ANALYSIS
To illustrate our LPV controller synthesis approach,

we begin with ourH∞ analysis. Consider a general LPV
closed loop system{

ẋ = A(p)x + B(p)w,
z = C(p)x + D(p)w,

(4)

where A(p), B(p), C(p), D(p) are affine matrix func-
tions of the external varying parameter vector

p := (p1(t), p2(t), · · · , pr(t)),

which is a function of time. And

pi ∈ [pimin, pimax],

wherepimin andpimax are the limits of the trajectory of
the varying parameterpi(t). The LPV plant constitutes a
convex hull due to the affine characteristics of the matrix
functions. We can thus formulate the system as{

ẋ =
∑n

i=1 αiAvix +
∑n

i=1 αiBviw,
z =

∑n
i=1 αiCvix +

∑n
i=1 αiDviw,

(5)

whereαi = αi(p(t)) is the varying parameter coefficient
andαi ∈ [0, 1],

∑n
i=1 αi = 1, wheren = 2r is the num-

ber of the vertices of the convex hull.Avi, Bvi, Cvi, Dvi

are the vertices of the convex hull of the closed-loop sys-
tem. We denote the corresponding transfer function of
the vertices as

Gi(s) :=
(

Avi Bvi

Cvi Dvi

)
. (6)

The control objectives for the LPV system can be cast
into theH∞ problem for the vertices of the convex hull.
We have the followingH∞ analysis theorem:

Theorem 1 Consider the closed-loop LPV system in the
form of (5). Let γ > 0 be given. Then the following
statements are equivalent:

(1) The closed-loop LPV system is asymptotically sta-
ble and theH∞ norm of the closed-loop trans-
fer function fromw to z is less thanγ for any
αi ∈ [0, 1].
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(2) There exist real matricesE andP = P T > 0 such
that for i = 1, 2, · · · , n,

−(E + ET) ∗ ∗ ∗ ∗
Avi

TE + P −P ∗ ∗ ∗
Bvi

TE 0 −γI ∗ ∗
E 0 0 −P ∗
0 Cvi Dvi 0 −γI

 < 0.

(7)

Sketch of the proof.For convenience, rewrite (5) as{
ẋ = AΣx + BΣw,
z = CΣx + DΣw.

(8)

By the principle of convexity, condition (2) is equivalent
to 

−(E + ET) ∗ ∗ ∗ ∗
AΣ

TE + P −P ∗ ∗ ∗
BΣ

TE 0 −γI ∗ ∗
E 0 0 −P ∗
0 CΣ DΣ 0 −γI

 < 0.

(9)
After some matrix manipulations and applying the Pro-
jection Lemma ([3]), (9) is equivalent toAΣ

TP +PAΣ−P + 1
γ
CΣ

TCΣ ∗ ∗
BΣ

TP + 1
γ
DΣ

TCΣ −γI+ 1
γ
DΣ

TDΣ ∗
P 0 −P

<0.

(10)
Considering the Lyapunov function

V (x) := xTPx > 0,

and using the Schur complement on (10), we can show
that

‖z‖2
2 − γ2‖w‖2

2 + V̇ < 0.

This is exactly theH∞ condition for the closed loop
transfer function of the given LPV system, i.e.,

‖GΣ‖∞ = sup
ω 6=0

‖z(t)‖2

‖w(t)‖2
< γ. (11)

2

By introducing an extra matrixE in the H∞ analy-
sis LMI set (7), we decouple the termPAΣ + AΣ

TP in
the LMI condition for system stability. This has the ob-
vious potential and advantage in analyzing LPV system
using a parameter dependent Lyapunov function to re-
duce conservatism and also in multi-objective feedback
control synthesis.

For our LPV controller design, Theorem 1 entails a
straightforward synthesis method. The finite number of
vertices of the convex hull capture the characteristics of
an infinite number of possible trajectories and rates of
the varying parameters in the closed loop system. So a

set of LMI constraints (7) at the vertices of the system
convex hull impose an LPV controller meeting the sta-
bility and H∞ performance requirements for the closed
loop LPV system. From the proof, we can see that the
Lyapunov function is only a function of the state variable
x, and is independent of the external varying parameter
p. Thus the closed-loop system performance is guaran-
teed for any trajectory and rate of the varying parameters
in the given range. However, this method is inevitably
conservative if we choose the sameP andE for theH∞
synthesis at all the vertices. To take advantage of the
extra matrix variableE in the H∞ condition, less con-
servative LPV control synthesis methods are given in the
following section.

4 H∞ SYNTHESIS
Considering our system model (3), we define the un-

certainty parameter set as

∆ := {δ = (δ1, δ2, · · · , δr) : δi ∈
[
δi, δ̄i

]
},

where each parameterδi could be any value in a prede-
fined range

[
δi, δ̄i

]
.

The matrixAδ(δ) can then be considered as an affine
function mapping from∆ to the system matrix setΩA

with the parameter vector variableδ ∈ ∆, i.e.,

Aδ : ∆ → ΩA, such thatAδ(δ) ∈ ΩA for all δ ∈ ∆.

The coefficient matricesA0, A1, · · · , Ar are known con-
stant matrices determined by the system dynamics, non-
linearity and uncertainty structure.

Rewrite the LPV plant model (3) in a convex set rep-
resentation: ẋ =

∑2
i=1

∑2r

j=1 αpi
αδj

Aijx + B1w + B2u,
z = C1x + D11w + D12u,
y = C2x + D21w,

(12)

whereαpi ∈ [0, 1] andαδj ∈ [0, 1] represent the coeffi-
cients for varying parameterp, nonlinearity and parame-
ter uncertaintyδ in the convex set. Note that

αp1 =
p2 − p

p2 − p1
∈ [0, 1], αp2 =

p− p1

p2 − p1
∈ [0, 1]

satisfy

2∑
i=1

αpi = 1,
2r∑

j=1

αδj = 1,
2∑

i=1

2r∑
j=1

αpiαδj = 1.

The coefficient matrixAij is the corresponding vertex of
the system matrix in the convex hull. To reduce conser-
vatism and to take advantage of the acceleration infor-
mation, we suppose the bound of the acceleration of the
varying parameter is known, i.e.,

ṗ ∈ [pd1, pd2],
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wherepd1 andpd2 are the minimum and maximum ac-
celeration of the varying parameter, which in our case, is
the rotor speed.

Assuming full state is available for feedback, our de-
sired LPVH∞ controller is of the form

u =
2∑

i=1

αpiKix, (13)

then the closed-loop state feedback system can be repre-
sented by

Gs :
{

ẋ=
∑2

i=1

∑2r

j=1 αpi
αδj

(Aij + B2Ki)x + B1w,

z=
∑2

i=1 αpi
(C1 + D12Ki)x + D11w.

(14)
For convenience, we denote

Gs :
{

ẋ = Asx + Bsw,
z = Csx + Dsw.

(15)

The vertices of the convex set (14) is denoted as

Gsij :=
(

Asij Bsij

Csij Dsij

)
:=

(
Aij + B2Ki B1

C1 + D12Ki D11

)
,

(16)
for i = 1, 2, j = 1, 2, · · · , 2r.

We then have the following procedures to construct
ourH∞ state feedback controller.

STEP 1. For the LPV plant model (12) and desired
closed-loopH∞ norm γ, solve the following set
of LMIs (17),
−(E+ET) ∗ ∗ ∗ ∗

AijE+B2Mi+Pij−Pij +Qij ∗ ∗ ∗
C1E+D12Mi 0 −γI ∗ ∗

E 0 0 −Pij ∗
0 B1

T D11
T 0 −γI

< 0,

(17)
whereE, Pij = Pij

T > 0, Mi are unknown, and
Qij is defined as

Qij = pdi
P2j − P1j

p2 − p1
,

for i = 1, 2, j = 1, 2, · · · , 2r.

STEP 2. The desired state feedback LPV controller is of
the form (13), where

Ki = MiE
−1. (18)

Theorem 2 The closed-loop system consisting of the
LPV plant(12) and the LPV state feedback law(18) has
the following property: It is asymptotically stable and the
H∞ norm of its transfer function fromw to z is less than
γ for any time varyingp ∈ [pmin, pmax], ṗ ∈ [pd1, pd2]
andδ ∈ ∆.

This theorem can be proved by constructing a parameter
dependent Lyapunov function

V (p, δ) := xTP (p, δ)x =
2∑

i=1

2r∑
j=1

αpi
αδj

xTPijx,

and applying Theorem 1 for the closed loop LPV sys-
tem analysis. We omit the proof here (See [9]). The
LMI condition in Theorem 2 specifies a parameter de-
pendent Lyapunov function which is less conservative
than the constant Lyapunov function condition follow-
ing Theorem 1. This can be seen by settingPij = P0 for
i = 1, 2, j = 1, 2, · · · , 2r, and consequentlyQij = 0,
then we get the constant Lyapunov function condition,
which guards against an arbitrarily fast changing param-
eter without taking into consideration the acceleration in-
formation.

For the output feedback design, we construct a state
observer and use the same techniques to obtain the ob-
server gain. The observer design is just the dual form of
the state feedback design.

5 SIMULATION/IMPLEMENTATION
To verify the robustness and performance of our LPV

controller, we compare our design with aµ synthesis
controller. Fig. 3 gives the comparison of theH∞ norm
of different design approaches. As we can see, the per-
formance of our robust LPV design is better than theµ
design in the simulation for the rotor speed from0 to
1000 rad/s.
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LPV design at particular p value
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Figure 3: Comparison ofH∞ norm

We demonstrated our controller in the AMB test rig.
The rotor was successfully levitated and spun up to
12, 000 rpm. The vibration level for the flexible modes
of the rotor is significantly suppressed.

For an AMB system, the nominal bias current is an
important design parameter. Generally a low bias cur-
rent entails low power consumption, but may induce in-
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sufficient actuator force and possible instability of the
control system. Based on our robust LPV design, the
controller should be able to maintain stability and per-
formance in the presence of the system nonlinearity and
uncertainty, including the potential variation or decrease
of the bias currents in the coils of the magnetic bear-
ings. For test purposes, we decrease the nominal bias
current and test the control system stability and perfor-
mance. The bias current can be reduced by around 75%
without losing system stability. Fig. 4 and 5 are the per-
formance comparison of the two cases. The experimental
results demonstrate the effectiveness and performance of
our robust LPV controller in face of system nonlineari-
ties and uncertainties.
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Figure 4: Nominal bearing coil bias current
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Figure 5: Decreased bearing coil bias current

6 CONCLUSIONS
We developed a new approach toH∞ analysis and

synthesis of LPV system with both measured varying
parameter and unmeasured uncertainties and nonlinear-
ities. A parameter dependent Lyapunov function was
constructed to reduce conservatism and take advantage
of the acceleration/deceleration information. Simulation
and experimental results confirmed the effectiveness of
our design.
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