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ABSTRACT 
Magnetic bearings offer many advantages over 

conventional bearings, but they have to incorporate 
retainer or backup bearings due to their limited force 
capacity. Understanding the contact dynamics and 
controlling the rotor when it is in contact with the 
retainer bearings are important issues for the successful 
use of magnetic bearings in safety critical and wider 
applications. The contact dynamics are complicated and 
various analysis techniques have been suggested in the 
literature. These include modelling contact forces as 
non-linear functions of penetration depth. In this paper, 
an alternative method based on the constrained 
Lagrange equations of motion is introduced. Simulation 
results show its ability to predict a rotor contact orbit 
with competitive computational efficiency.   
 
INTRODUCTION 

Magnetic bearings have to incorporate retainer 
bearings to protect the rotor and stator laminations. 
Vibration levels may increase due to power loss, system 
faults, or sudden changes in system internal and 
external dynamic properties, such as unbalance [1]. 
Most controllers are designed by utilising linearised 
system dynamics, but when the rotor comes into contact 
with retainer bearings, it enters a highly non-linear state 
[2]. The system may have to be shut down in order to 
prevent further damage even if the magnetic bearings 
are fully functional. Furthermore, extremely high 
impact forces and high temperatures during the contact 
cause damage to the retainer bearings. 

In some cases, the sudden increase of rotor 
vibrations, which may cause the contact, is transient or 
temporary [3]. It may be possible with proper control 
action to recover rotor position and resume normal 
contact free operation. This would minimise impact 
forces and damage to retainer bearings. Also, this 
would open new application areas, such as land sea and 
air transportation, where a rotor bearing system may be 
subjected to sudden external excitation and shutting 

down the system is not an option. Therefore, efficient 
modelling of contact dynamics is important for the 
design of suitable controllers to cope with contact 
conditions.  

The contact dynamics involve several physical 
factors [4]. The highly non-linear normal contact forces 
can be estimated using Hertzian theory. The contact 
forces are represented as functions of displacement of 
the rotor at the contact point [5], and are related to the 
rotor penetration depth that increases stiffness of the 
contact point until the maximum penetration depth is 
reached [6]. This model suffers from some deficiencies 
such as physically meaningless negative contact forces 
[7]. Also, the function is not differentiable at zero 
penetration. However, a non-linear contact force 
relationship was implemented that does not exhibit 
these deficiencies [8]. This paper investigated a case 
where a rotor drops onto a retainer bearing after sudden 
failure of the main active magnetic bearing. Another 
difficulty is the modelling of friction forces. These can 
be considered to be proportional to the normal forces 
(Coulomb). However, they may also depend on the 
relative velocity, surface material properties, 
displacement, contact geometry and lubrication levels, 
and behave in a non-linear manner [6, 9]. The Coulomb 
friction model is used in this paper.  

Various experimental and theoretical impact 
modelling studies have enhanced the understanding of 
the interaction dynamics of a rotor with a retainer 
bearing [10]. However, most have suffered from 
computational inefficiencies. These arise due to the 
small integration step sizes required to match the high 
frequency introduced by the high contact stiffness [5, 6, 
8]. Instead of trying to model the complicated contact 
dynamics, an alternative method of based on the 
constrained Lagrange equations of motion is introduced 
in this paper. This approach does not require modelling 
of the contact dynamics. When contact occurs, it is 
treated as a constraint on the generalised coordinates 
and the necessary constraint equations are added 

Ninth International Symposium on Magnetic Bearings, August 3-6, 2004, Lexington, Kentucky, USA HOME



 2 

through Lagrange multipliers [11]. Constraint forces are 
then automatically calculated at each integration step 
and the simulation is switched to a non-contact model 
as soon as the constraint forces change sign. This would 
provide an efficient simulation environment to develop 
and test controllers, which are capable of bringing the 
rotor back to normal operating conditions. It would 
eliminate the high numerical stiffness problem 
associated with conventional modelling of contact 
forces. 

 
EQUATIONS OF MOTION 

The system to be simulated consists of a uniform 
flexible steel shaft of length 2 m and radius 25 mm, 
with four 10 kg rigid discs of radii 12 cm. The complete 
rotor mass of 100 kg is supported by two radial 
magnetic bearings each with a radial force capacity of 
1700 N and a bandwidth of 100 Hz. The magnetic 
bearing air gaps are 1.2 mm and they are protected with 
retainer bearings having 0.75 mm radial clearance. A 
schematic view of the flexible rotor/ magnetic bearing 
rig is shown in figure 1. 

 
 
 
 
 
 
 
 
 
 
 
 

 
The constant speed rotor dynamics are modelled by 

a 13 lumped mass finite elements with linearised 
magnetic bearing characteristics: 

 
Mq Cq Kq F�� �� � �                                (1) 

 
Here M, C and K are the mass, damping and stiffness 
matrices of the rotor/magnetic bearing system, which 
includes local proportional and derivative (PD) 
feedback. The input vector F represents external 
disturbances including unbalance forces. The 
generalised displacement vector q contains linear and 
angular deflections at nodal positions. This gives four 
degrees of freedom for each node and q can be written 

 
[ , , , ]q x y � �T T T T T�    (2) 

 
where x and y denote the linear displacement vectors in 
orthogonal X-Y axes, and �, � denote angular 
displacement vectors about the X-Y axes respectively.  

If the rotor comes into contact with retainer 
bearings, the force vector F in equation (1) must be 
modified to include the contact forces. These will be 
applied to nodes corresponding with the retainer 
bearing locations. The external force vector can be 
written as 

 
� �ob C CF F B F    (3) 

 
where Fob is the out-of balance force vector, BC is a 
contact force coefficient matrix specifying the contact 
locations, and FC represents the contact forces. 
 
MODELLING OF CONTACT FORCES  

The classical method of calculating contact forces 
is to utilise the Hertzian theory [12]. When contact 
occurs, the normal contact force induced is a function 
of the contact stiffness Kc and contact damping Cc, and 
related to the rotor penetration depth �. A simple 
method is to use linear contact force expression [5]:   

 
, 0

0 , 0

KcFn
� �

�

�� ����
� ���

            (4) 

 
Alternative formulations use non-linear expressions [8]. 
However, whatever expression is used, the contact 
force calculation as a function of � introduces very high 
stiffness. This introduces high frequency behaviour and 
hence requires longer computation time. Therefore, 
equation (4) is used to compare the computational 
efficiency with the approach developed in this paper. 
The benefits in terms of the computational efficiency 
will be demonstrated on the simulated flexible rotor 
magnetic bearing system described in the previous 
section. 
 
CONSTRAINT LAGRANGIAN FORMULATION 

When contact occurs, say, at node k, it can be 
treated as a constraint on the generalised co-ordinates 
through 

 
2 2 2

1 0k kf c x y� 	 	 �     (5) 
 
where c is the retainer bearing clearance. This 
holonomic constraint reduces the number of degrees of 
freedom by unity. If contact occurs at another node 
simultaneously, a second constraint equation similar to 
equation (5) must be introduced. In general, the 
constrained matrix dynamic equation of the system can 
be written as 
 

Mq Cq Kq J � F�� �
T� � � �   (6) 

 

FIGURE 1: Flexible rotor/magnetic bearing rig 
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The constraint Jacobian matrix J contains the partial 
derivatives of the constraint equations with respect to 
generalised coordinates. The Lagrange multiplier vector 
� has a dimension equal to the number of constraint 
equations. Introduction of � increases the number of 
variables and additional equations are needed. These 
equations can be obtained by differentiating the 
constraint equations twice with respect to time giving 
the following equations of motion for the contact case 
[11]:  

 

( , )
obq F Cq KqM J

� D q qJ 0

�� �

�

T
 �
� 
 �	 	� � � �� � � � �� � �� �
  (7) 

 
This gives the correct number of equations to solve for 
the acceleration vector and the Lagrange multipliers. 
The vector D contains the velocity and displacement 
related terms arising from the double differentiation. By 
defining a state vector z as follows: 

 
[ , ]z q q�T T T�    (8) 

 
the second order algebraic-differential equations (7) can 
be converted to a system of first order differential 
equations as follows: 
 

( , )
2

1 2

z
z

q z z
�
��


 �
� �
� 
� �

      (9) 

 
where ( , )1 2q z z�� is solved from equation (7). Equation 
(9) can be solved with any suitable integration 
algorithm. This approach does not require the 
modelling of the contact forces, which are 
automatically eliminated from the equations. However, 
the contact forces are equal to the constraint forces, 
which hold the rotor to the constraint. The constraint 
forces are defined as 
 

CF J �T�	    (10) 
 
When contact occurs, the constraint (or contact) forces 
will be directed to the centre of the rotor and hence will 
keep the rotor at the clearance limit. If the contact 
forces change direction, the simulation should be 
switched to the non-constrained case as given by 
equation (1). Therefore the whole process involving 
contact and non-contact models can be automated with 
two switches. The non-contact model should be 
executed for as long as the constraint equations are 
positive (i.e. f1 > 0) and will switch to the contact model 
at the crossing point of f1 = 0 and negative slope. The 
contact model will then run for as long as the contact 
force is towards the centre of the clearance circle, and 

will switch back to the non-contact model if the contact 
force changes direction at zero crossing. A friction 
force can easily be added as a function of the normal 
component of the contact force. The one important 
issue when changing from one model to another is the 
calculation of the initial conditions, which will be 
discussed in the following example.  

Figure 2 shows the coordinate system at a contact 
node, say node k. The shaft centre whirls around the 
bearing centre as described by the variables xk and yk. 
The shaft also rotates with a constant speed �. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Since contact involves normal and tangential force 
components, it is convenient to work with the rotating 
R-S axes rather than the fixed X-Y axes. The coordinate 
transformation at any given point in time can be 
accomplished by using the following direction cosine 
matrix: 
 

 
cos sin
sin cos
� �

�
� �

� �	 �� ��� �� ��� �
   (11) 

 
where 

 
1tan ( / )k ky x� 	�    (12) 

 
The first and second derivatives of the constraint 
equation (5) are: 

 

1
2 2

1

2 2 0 ( )

2 2 2 2 0 ( )

� � �

�� �� �� � �

k k k k

k k k k k k

f x x y y a

f x x y y x y b

�	 	 �

�	 	 	 	 �
   (13) 

The Jacobian J is a row vector and the right hand side 
matrix D is now a scalar for this case: 

 

2 2

[0 ... 2 0... 2 ....0]

2 2

J

D � �

k k

k k

x y

x y

� 	 	

� �
  (14) 

FIGURE 2: System axes at the contact node 
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The constraint (or contact) forces can then be calculated 
from equation (10): 

 

, 1

, 1

2

2
C x k

C y k

F x

F y

�

�

�

�
           (15) 

 
Converting these forces into the R-S frame and taking 
the R component gives the normal contact force. This is 
negative when contact occurs. A zero crossing before 
this force changes sign signals the end of the contact. 
The state values at the crossover can be used as initial 
conditions for the non-contact model. 
 Consider now the switch from a non-contact to 
contact model. The setting of the initial conditions for 
the contact model is more involved. When zero 
crossover occurs, the state variable values satisfy only 
the constraint equation, but not the first derivative of 
the constraint equation (13a). The second derivative of 
the constraint is automatically satisfied through the 
solution of equation (7). To set the initial velocities for 
xk and yk, it is again beneficial to consider the 
components of the impact velocity in the R-S 
directions. The radial component of the velocity must 
be set to zero as implied by equation (13a). It is logical 
to keep the same tangential component, although this 
could be set to another value appropriate to physical 
conditions. 

Frictional forces are proportional to the normal 
contact forces. However, they are also correlated to the 
relative velocity between the rotor and the bearing. This 
relative velocity v between the surfaces can be 
calculated as 

   
( )v R R R Rs b s b b�� �� 	 	 ��        (16) 

 
where Rs and Rb denote the radius of the shaft and the 
bearing respectively, and �b is the rotational speed of 
the inner surface of the bearing (for rolling element 
bearings).  A friction force Ff can then be represented 
as  

 
sgn ( ) 0nFf F for� � �� � � �        (17) 

 
where Fn is normal component of the contact force and 
� denotes the dynamic coefficient of friction. In the 
following results, it is assumed that the bearing housing 
does not rotate (i.e. �b = 0), and no stiction exists.  
 
SIMULATION RESULTS AND DISCUSSION 

A sudden increase in out of balance is used to 
initiate contact with the non-driven end retainer bearing 
(figure 1) at different rotational speeds. The out of 
balance is added to the disk at the non-driven end of the 

rotor. Initially, the simulation is run with a small out of 
balance force until a steady state motion is achieved 
before the out of balance is increased further. After a 
pre-defined period, the out of balance is reduced to the 
initial value to show that the rotor returns to its original 
non-contacting steady state orbit. A typical run is 
simulated at a rotational speed of � = 90 rad/s and the 
resulting orbit is shown in figure 3. A critical speed 
involving significant first order rotor flexure is about 
150 rad/s. The initial unbalance of 0.02 kgm was 
suddenly increased to 0.1 kgm to cause the contact. The 
radial position of the rotor and the contact forces as 
calculated by the constrained Lagrangian model are 
shown in figure 4. This produces contact forces as high 
as 1.8 kN, settling down with peaks of around 700 N 
before the rotor returns to a non-contacting state.  

Figures 5 and 6 show the results for a higher steady 
rotational speed of 190 rad/s, which is above the first 
flexural mode critical speed. The initial unbalance was 
0.01 kgm before being increased to 0.03 kgm. 
Bouncing motion is clearly observed with contact 
forces up to 2.2 kN.  

The results and the orbit shapes obtained by the 
constrained Lagrangian formulation are in agreement 
with those experienced by other researchers [7, 13]. 
However, the main benefit of using this approach is the 
computational efficiency. To demonstrate this point, the 
same simulations were run using the classical contact 
model given in equation (4). The contact forces, which 
depend on the selection of contact stiffness properties, 
were smaller than the forces predicted by the 
constrained Lagrangian formulation. A typical run at 
190 rad/s with a relatively high stiffness value of Kc = 
1.25×1012 N/m takes approximately 716 seconds 
computation time for one rotational cycle after the first 
incidence of contact. By comparison, the constrained 
Lagrangian method takes about 13.3 seconds per cycle 
of simulation. The maximum contact force of 0.9 kN 
predicted by the conventional model is lower than the 
1.8 kN predicted by the constrained Lagrangian 
formulation. The computational time can be improved 
by selecting a lower Kc value for the contact stiffness. 
For example, using Kc = 1.25×1010 N/m reduces the 
computational time to about 331 seconds per cycle of 
simulation in contact with the predicted maximum 
contact force of 85 N. The constrained Lagrangian 
predicts the upper limit of contact force possible for any 
type of retainer bearing. This is due to the fact that the 
constraint considers the nominal radial clearance as an 
absolutely rigid boundary for rotor excursions. The 
orbit and the contact forces predicted by the high 
stiffness case when Kc = 1.25×1012 N/m at 90 rad/s are 
shown in figures 7 and 8 respectively. They are of a 
similar nature to those shown in figures 3 and 4. 
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CONCLUSIONS  
A variety of techniques for modelling contact 

dynamics have been suggested in the literature, 
including modelling contact forces as non-linear 
functions of penetration at the contact point. Most of 
these techniques introduce numerical inefficiencies 
during the integration of the high order flexible rotor 
equations of motion and high numerical stiffness 
associated with the contact equation. The method 
presented in this paper, based on the constrained 
Lagrangian formulation, overcomes these difficulties. 

The constrained Lagrangian equations of motion 
do not require the modelling of the contact forces. 
These are eliminated by the constraints. When contact 
occurs, a constraint on the generalised coordinates and 
the constrained equations is added to the equations of 
motion through Lagrange multipliers. Contact forces 
may then be calculated using the Lagrange multipliers, 
which are evaluated during the solution of algebraic-
differential equations of the system. The direction of 
the constraint forces determines the transition from a 
contact state to a non-contact state. The treatment of 
initial conditions is needed when initiating the contact 
model. Numerical stiffness associated with classical 
representation of contact forces is avoided. Simulation 
examples were used to assess the level of computational 
efficiency of the proposed technique. 

It is anticipated that the technique will be of use in 
future real time estimation of contact forces for 
application in the design of position control algorithms. 
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FIGURE 3: Rotor orbit response at 90 rad/s 
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FIGURE 4: Radial displacement and 
contact force at 90 rad/s 
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FIGURE 5: Rotor orbit response at 190 rad/s 
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FIGURE 6: Radial displacement and contact 
force at 190 rad/s 
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FIGURE 7: Rotor orbit response at 90 rad/s 
with classical contact model Kc=1.25×1012 N/m 
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FIGURE 8: Radial displacement and contact 
forces at 90 rad/s with classical contact model 
Kc = 1.25×1012 N/m 
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