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ABSTRACT
A method of online fault identification in ro-

tor/magnetic bearing systems is presented using wavelet
analysis. A filter bank approach is taken to identify the
discrete time wavelet coefficients of the rotor displace-
ment signals. From artifacts present in the discrete time
wavelet series associated with specific faults, it is shown
that it is possible to identify both the onset time and
the fault type. This method is demonstrated for simula-
tions of a flexible rotor/active magnetic bearing assembly
during auxiliary bearing contact and direct synchronous
forcing for a range of running speeds covering flexural
critical speeds.

INTRODUCTION
Rotor/magnetic bearing systems exist in a wide

range of applications and may experience input distur-
bances giving rise to transient rotor vibration. The origin
of a disturbance may arise during normal operating con-
ditions or as a direct result of a fault. Examples of distur-
bance include unbalance changes, flow induced forces,
base acceleration and sensor malfunction. It is impor-
tant to be able to identify the onset, duration and type of
disturbance in order to maintain safe operation of a ro-
tor/magnetic bearing system. This is required to ensure
that appropriate control forces are applied to the rotor to
restore the system to an operating condition within ac-
ceptable bounds.

Sufficient control forces in a fault condition can be
evaluated using either a control strategy ensuring stabil-
ity under open loop failure or by changing the control
strategy itself. Coleet al [1] present a method of fault
tolerant control through the use of a neural network to
identify faults and reconfigure anH∞ control strategy to
deal with the fault. Seo and Kim [2] focus on the design
of an H∞ control strategy robust to linear time-varying
parameter uncertainty and actuator failure. The work of
Gündes [3] presents a design method ensuring system
stability during failure of actuators and sensors.

A wide variety of model-based approaches have
been taken to identify faults. Sauter and Hamelin [4]

consider a method of fault identification from resid-
uals. Increased residual robustness is achieved with
frequency-domain fault-detection filtering, where the ef-
fect of the filter is to optimize the ratio of magnitudes
between fault and disturbance. Maki and Loparo [5] of-
fer a neural network approach to fault detection, which
has advantages since little understanding of the system
is required. It is also applicable to systems with non-
linearities. Bachschmidet al [6] present a method of
multiple fault identification by means of model-based
identification in the frequency domain.

Analysis of rub-impact faults using the continuous
wavelet transform has been studied by Penget al [7].
This method identifies key structure associated with a
rub-impact event. Lin and Qu [8] also consider a method
of fault diagnosis using feature extraction with the Mor-
let wavelet in order to remove noise from the signal. This
approach utilizes the ability of wavelets to remove noise
from a signal rather than provide fault identification in
the wavelet domain. A wavelet approach to vibration
analysis is presented by Newland [9] allowing for a time-
frequency map presentation of a signal with a changing
spectral density from which an understanding of the sig-
nal vibration can be made.

This paper focuses on the use of wavelet analy-
sis to detect faults in rotor/magnetic bearing systems.
A method of feature extraction from the discrete time
wavelet series is introduced in order to identify fault on-
set and type.

SYSTEM MODEL
A flexible rotor model may be derived from finite el-

ement analysis to give an equation of motion of the form:

M
..
q+(ΩG+C)

.
q+Kq = Df f +Duu (1)

whereq is the coordinate vector of the rotor in the refer-
ence frame relative to the base and containing displace-
ments in thex andy directions and the angular displace-
ments about them. Thex andy axis are arranged orthog-
onally at an angle of±45o to the horizontal and vertical
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FIGURE 1: Rotor/active magnetic bearing (AMB) configuration
showing auxiliary bushes (A,C,D,F) and auxiliary bearings (B,E).
Displacement sensors measuring rotor displacement relative to
base motion are shown at 1,2,3,4. Finite beam discretization is
also shown.

respectively.f represents the force vector acting on the
rotor andu is the control force vector applied to the rotor.
M ,C,K andG represent the mass, damping, stiffness and
gyroscopic matrices respectively.Df and Du are force
distribution matrices, which increase the dimensions off
andu to those ofq.

A rotor/magnetic bearing system was configured
from a flexible rotor with four disks, supported by two
active magnetic bearings. A finite element model was
constructed from 12 elements with a total of 52 degrees
of freedom, finite element discretization is shown in fig-
ure 1. Sensor displacements were considered to be in
fixed and rotating coordinate systems with four sensors
representing 2 planes. Auxiliary bearings are present in
the model inside the active magnetic bearings and auxil-
iary bushes are present around the rotor in order to pro-
vide safety requirements (figure 1). Rotor control forces,
u, are evaluated using a PID controller configured to
provide rotor stability with minimum stiffness in order
to minimize transmitted forces. The first four critical
speeds of the rotor, configured with PID control, occur
at 10Hz, 17Hz, 28Hz, and 67Hz. The first two are dom-
inated by rigid body motion, while the two higher fre-
quency modes involve significant flexure.

WAVELET ANALYSIS AND FILTER BANKS
Introduction to Wavelet Analysis

Wavelet analysis provides a multi-resolution time-
frequency analysis of a signal through the evaluation of
the signal with an appropriate mother wavelet,ψ, at dif-
ferent translations and dilations. This overcomes many
of the problems associated with Fourier analysis such as
fixed resolution and the evaluation of frequencies within
a specific time window. This is achieved with a mother
wavelet,ψ(t), with zero mean:∫ ∞

−∞
ψ(t)dt = 0 (2)

The wavelet transform of a functionf(t) can now be writ-
ten as:

c(a,b) = |a|−1/2
∫ ∞

−∞
f (t)ψ

(
t−b

a

)
dt (3)

wherea and b give the dilation and translation of the
wavelet respectively. Since wavelets are localized in both
time and frequency this relates to the time window and
pseudo-frequency, which is dictated by the frequency
content of the wavelet.

Discrete Time Wavelet Analysis
Through digital signal processing of a signal it is

possible to obtain the wavelet transform coefficients,
c(a,b), on a discrete grid corresponding to the discrete
time wavelet coefficients. This is achieved whena and
b are assigned regularly spaced values:a = ma0 andb
= nb0, wherem andn are integer values. This is fully
explained and developed in references [10, 11], how-
ever, an overview is given here for completeness. Ref-
erences [10, 11] show that a discrete time signal can be
transformed into its discrete time wavelet series by being
passed through high-pass and low-pass filters in parallel
and downsampled by 2. The output signals are referred
to as the approximate and detail coefficients respectively.
It is the approximate coefficients that correspond to the
discrete time wavelet coefficients. Successive wavelet
decompositions can be obtained by repeating the filter-
ing and downsampling (figure 2). Following the filter
bank derivation in reference [11] it is possible to show
that for a two channel orthogonal filter bank a single
level wavelet decomposition takes the form of the con-
volutions:

h0[n]∗x[n]|n=2k = X[2k] (4)

h1[n]∗x[n]|n=2k = X[2k+1] (5)

where decomposition filtersh0[n] andh1[n] represent the
high and low pass filters respectively and have an im-
pulse response specific to the choice of wavelet. Higher
levels of coefficient are achieved from successive decom-
positions of the detail coefficient such that an output vec-
tor, X′, of coefficients can be produced in the form:

X′ =


X1[2k]
X2[4k]

...
Xn[2nk]

Xn[2nk+1]

 (6)

where the subscript indicates the octave number. In con-
trast to Fourier analysis a wavelet approach is not re-
stricted to a single basis set, but allows for the evaluation
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FIGURE 2: Wavelet decomposition filter bank.

of the wavelet transform coefficients with a variety of dif-
ferent wavelets. The different structures of the wavelets
allow for a tailored approach to be taken when identi-
fying different characteristics. A mother wavelet can be
chosen to reflect the key artifacts associated with a spe-
cific fault disturbance.

The sample rate at any given sub-band,i, is given by
2i since it is downsampled by 2 in each channel. This
is calledDyadic sampling. Perfect signal reconstruction
can be achieved through successive upsampling, filter-
ing, with reconstruction filters, and summation of the co-
efficients with the detail signal.

The Haar Wavelet
There exist many different wavelets ranging in level

of complexity. A choice must therefore be made as to
which wavelet to use. Since this is focused on fault iden-
tification it makes sense to choose a wavelet to best re-
flect the fault conditions with the shortest duration, there-
fore maximizing detection speed. Consideration of sud-
den rotor unbalance and rotor/bearing contact faults are
to be identified. The Haar wavelet is therefore a natu-
ral choice since it can be constructed from step changes
resembling the sudden disturbances. The Haar basis, al-
though simple, identifies key features such as periodic
time variance and the relationship with filter bank anal-
ysis [11]. The Haar wavelet is also the simplest wavelet
of the Daubechies family of wavelets [12], and can be
expressed as:

ψHaar(t) =

 1 0≤ t < 1/2
−1 1/2≤ t < 1
0 otherwise

(7)

FAULT DISTURBANCE CLASSIFICATION
In order to maintain safe operation of a ro-

tor/magnetic bearing system it is important to identify
the onset time and disturbance type in order to evaluate
the correct control forces. Correct identification of the
disturbance from the response requires an understanding
of both the system and the disturbance acting upon it.

Direct Synchronous Forcing
Direct synchronous forcing within the system aris-

ing from unbalance may be present at a residual level
or it may occur suddenly. The most dramatic case is a
step change. This can be represented in fixed or a syn-
chronous rotating reference frames as:

fx(t)+ i fy(t) = meΩ2eiΩtH(t− τ) (8)

fu(t)+ i fv(t) = meΩ2H(t− τ) (9)

whereH(t) is the Heaviside step function,m is the un-
balance mass,e is the eccentricity andΩ is angular fre-
quency of rotor rotation.fx andfy represent the forces in
the directions of thex andy axes respectively. The forces
fu and fv represent the components in the directions of
the u and v axes, where theu and v are orthogonal in
a rotational reference frame with a synchronous angular
frequency. A rotating reference frame is a natural choice
for the analysis of direct synchronous forcing since the
force can be represented as a constant rather than an os-
cillation vector. The response of the rotor,q(t), can be
described in both reference frames by:

q(t) =
{

0 t < τ
qtrans(t)+qss(t) t ≥ τ (10)

whereqtrans(t) andqss(t) represent the transient and the
steady state response respectively. In the case of a ro-
tating reference frame the steady state response of the
system is a constant. From equation (3) it is possible to
take the continuous wavelet transform of rotor displace-
ment,q(t), in theu andv directions at a specific element
node. Defining some timeTss to be the time at which the
system reaches steady state and the transient response be-
comes negligible, then for a single degree of freedom:

c(a,b) =


0 b < τ−a∫ ∞
−∞ qtransψ( t−b

a )dt τ−a≤ b < Tss+ τ
0 Tss+ τ < b

(11)
Therefore in a rotating reference frame, since a

wavelet has zero mean, the wavelet coefficients only have
non-zero values in the region of transient response.

Auxiliary Bearing Contact
Auxiliary bearing contact with the rotor may occur

from a wide variety of fault conditions. In order to iden-
tify contact from a sensor signal it is important to under-
stand the system dynamics. The force exerted by the aux-
iliary bearing on the rotor, during a short duration con-
tact, normal and tangential to contact may be written as:

fx(t)+ i fy(t) = [− fc− iµ fc]P(t)eiθ (12)
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FIGURE 3: Rotor displacement in the x direction at sensor 1
due to sudden unbalance, (a). Absolute normalized discrete time
wavelet series of rotor displacement during direct synchronous
forcing in a fixed reference frame at the second flexural mode at
the 1st (b), 3rd (c), 5th (d), and 7th (e), octaves.

whereµ is the friction coefficient of contact,θ is a phase
angle andfc is the radial force acting on the rotor from
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FIGURE 4: Absolute normalized discrete time wavelet series
of rotor displacement during a sudden change in direct syn-
chronous forcing in a rotating reference frame at the second flex-
ural mode.

the auxiliary bearing.P(t) is a parameter representing the
contact period and is zero when contact no occurs. This
was based on Hertzian stresses.

The rotor response to the short duration contact in
both the fixed and rotating reference frames will take the
form of equation (10). Therefore, a wavelet analysis of
the rotor displacement will contain non-zero wavelet co-
efficients during the transient response only, shown in
equation (11). However, unlike sudden unbalance the
wavelet coefficients will be localized in the rotating ref-
erence frame.

SIMULATION
Simulation of the rotor response to the different

fault conditions was undertaken over a range of running
speeds up to and including the natural frequency of the
second bending mode (67Hz). The wavelet decompo-
sition filter banks were configured with a wavelet sam-
pling frequency of 0.46ms, matching the synchronous
frequency at the 5th octave. The filter banks were config-
ured with a frequency range of eight octaves. This pro-
vides information of frequencies both higher and lower
than the running speed of the rotor. A rotor unbalance
response was obtained by applying a synchronous dis-
turbance force to the right hand end of the rotor equiva-
lent to 300N amplitude (figure 1). Wavelet analysis was
undertaken on the rotor displacement at sensor 1, in or-
der to demonstrate non-local fault detection. The octaves
have been numbered such that highest frequency is num-
ber one.

The rotor response at a frequency of 67Hz, corre-
sponding to the natural frequency of the second bending
mode, is presented in figure 3. Figure 3a shows the rotor
undergoing a transient period before settling into a steady
state vibration. This is further seen in figure 3d at the 5th
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FIGURE 5: Rotor displacement in the x direction at sensor 1
due to sudden unbalance, (a). Absolute normalized discrete time
wavelet series of rotor displacement during rotor/bearing contact
in a fixed reference frame at the second flexural mode at the 1st

(b), 3rd (c), 5th (d), and 7th (e), octaves.

octave, matching the synchronous frequency. In a rotat-
ing reference frame the wavelet coefficients only have
non-zero values in the region of the transient response.
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FIGURE 6: Absolute normalized discrete time wavelet series of
rotor displacement during rotor/auxillary bearing contact in a ro-
tating reference frame at the second flexural mode.

This is seen in figure 4 showing peaks in the coefficients
immediately after the onset of direct synchronous forc-
ing. It is clear from figures 3 and 4 that high and low
frequencies are excited by the sudden change in forc-
ing condition on the rotor. In a rotating reference frame
the wavelet coefficients are present immediately after the
disturbance before decaying. In the fixed reference frame
the low frequencies are seen to decay while frequencies
higher than and including the synchronous frequency re-
main. The response time of the different octaves to the
fault is dependent on the sampling frequency such that
the higher octaves, lower frequencies, take longer to re-
solve.

In order to identify artifacts due to rotor/auxiliary
bearing contact the rotor needs to be in steady state so
that any artifact associated with changes in the forc-
ing will have decayed. Auxiliary bearing contact was
made with a steadily orbiting rotor, undergoing direct
synchronous forcing slowly reducing with time, in order
to demonstrate the ability of wavelet analysis to detect
the sudden contact and the general behavior of the ro-
tor. Contact was achieved through progressive misalign-
ment of the right hand bearing (figure 1) until contact
occurred. Immediately after contact the bearing was re-
turned to its original location in order to prevent further
contacts. Direct synchronous forcing was used to excite
the rotor into a steady state orbit so that a comparison can
be made between the wavelet coefficients of both faults
allowing for them to be distinguished. Simulation of the
rotor/bearing contact shows the short duration contact as-
sumption to be reasonable with simulation contact time
lasting∼ 1/20th of a rotor period.

Figure 5 shows the wavelet coefficients evaluated in
a fixed reference frame at the 1st, 3rd , 5th and 7th oc-
taves. Localized excitation of the wavelet coefficients
due to the contact is clearly visible. This is further
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seen in figure 6 showing localized excitation of high
and low frequency wavelets coefficients immediately af-
ter rotor/bearing contact. However, in a fixed reference
frame residual wavelet coefficients associated with the
steady state rotor orbit are also present in the wavelet co-
efficients corresponding to frequencies higher than and
including the rotor speed (figure 5).

Figures 3, 4, 5 and 6 show that the onset time of
both sudden unbalance or rotor/bearing contact can be
identified. Furthermore, the induced wavelet coefficients
due to a rotor/bearing fault condition are only present for
a short period in both reference frames. However, sudden
rotor unbalance leads to short duration coefficients in the
rotating reference frame only and a steady vibration in
the fixed reference frame. Therefore it is also possible to
differentiate between fault conditions as well as identify
the onset time.

CONCLUSIONS
A digital signal processing approach was undertaken

to identify the discrete time wavelet coefficients of ro-
tor displacement through filter bank analysis in order to
ascertain fault onset and type. From an understanding
of the fault condition specific artifacts associated with
it can be identified within the wavelet coefficients. The
Haar wavelet was chosen as the mother wavelet since its
shape is suited for step changes in unbalance and short
duration contacts.

Consideration of sudden rotor unbalance indicates
that in a synchronous rotating reference frame wavelet
coefficients will only be non-zero during the transient re-
sponse of that frequency. In the case of rotor/bearing
contact it has been argued that non-zero coefficients will
also only be present during the transient response. How-
ever, in the contact case this is argued to be independent
of the reference frame, therefore the fault types can be
distinguished.

Simulations of a flexible rotor/magnetic bearing sys-
tem were undertaken at running speeds up to and includ-
ing the natural frequency of the second flexural mode of
vibration occurring at 67Hz. Rotor displacement result-
ing from direct synchronous forcing due to a sudden un-
balance was shown to contain localized high and low fre-
quency wavelet coefficients in a rotating reference frame.
It was also possible to detect the rotor orbit at a wavelet
coefficient comparable to the synchronous frequency.
Rotor/bearing contact was achieved through bearing mis-
alignment until contact with a steady state rotor orbit.
High and low frequency vibrations were detected in both
the fixed and rotating reference frames along with the
synchronous vibrations due to synchronous forcing. The
onset time of both fault conditions was easily detected.
Identification of the fault condition can be made from a
comparison between the reference frames of the faults.
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