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ABSTRACT

We consider the active health monitoring of rotordy-
namic systems in the presence of breathing shaft cracks.
The shaft is assumed to be supported by conventional
bearings and the Active Magnetic Bearing (AMB) is
used in a mid-shaft or outboard location as an actuator
to apply specified, time-dependent forcing on the sys-
tem. These forces, if properly chosen, induce a combi-
nation resonance that can be used to identify the mag-
nitude of the time-dependent stiffness arising from the
breathing mode of the shaft crack.

1 INTRODUCTION
Many critical rotating machines such as compressors,
pumps, and gas turbines continue to be used despite
aging and the associated potential for damage accumu-
lation. Therefore, the ability to monitor the structural
health of these systems is becoming increasingly impor-
tant. In the most general terms, structural health mon-
itoring can be defined as the process of implementing
a damage-detection strategy. This process involves the
observation of a structure over a period of time, the
extraction of features from these measurements, and
the analysis of these features to determine the current
state of health of the system. In this study, we present
a novel health monitoring approach for the detection
of cracks in rotating shafts utilizing an Active Mag-
netic Bearing (AMB) as an actuator for applying mul-
tiple types of force inputs on to a rotating structure
for analysis of associated outputs. The AMB is used in
conjunction with conventional support bearings and is
not utilized for rotor support, although it is expected
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that the technique can be applied to rotors under full
magnetic levitation. In addition to early crack detec-
tion, the technique described here lays the foundation
for self-healing of some cracks using the AMB actua-
tor to apply forces at intervals to prevent a crack from
“breathing.”

In last two decades, there have been a growing
number of applications for AMBs. However, in the
majority of these the AMBs are used as active suspen-
sion systems for shafts or rotors. Several components of
an AMB are characterized by non-linear behavior and
therefore the entire system is inherently nonlinear [2].
Zhu et al. [1] examine how the AMB, used as a damper,
can also actively control the vibration of rotor systems
and improve their stability. Much of the previous re-
search work is focused on the suspension characteristics
and the stability of the AMBs. In contrast, this work
uses AMBs strictly an excitation device.

Much work has also been done over the years re-
garding crack mechanics and damage detection. Di-
marogonas [3] gives an excellent review on the vibration
of cracked structures. However, a consistent cracked
bar vibration theory is yet to be developed, particularly
with regards to breathing cracks. Wauer [4] discusses
many investigations into the dynamics of cracked rotors
where the author mentions the lack of theories on crack
detection in its initial stage. Plaut [5] analyzed four res-
onances arising from internal, flexural and torsional fre-
quencies. However, they only considered vibrations of
unbalanced rotating shaft with no crack in it. Qin et al.
[6] discuss the dynamic response of a cracked shaft tak-
ing swing vibration of a disc into consideration. They
characterize how the response becomes chaotic due to
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new resonances as the crack deepens.
The current work is focused on the investigation

on the vibrational response of a cracked rotating shaft.
A phenomenological model has been developed that in-
corporates the breathing of the crack, nonlinear shaft
bending stiffness, and the external forces from the
AMBs. This model is then analyzed and a combina-
tion resonance is identified and the dynamical behavior
when the system is operated at this resonance can be
used to quantify the damage of the shaft.

2 MODEL
2.1 Equations of motion
The equations of motion for a simple rotor with a
cracked shaft can be written as [3, 7]:

M ü + C u̇ + K(u, t) u = Fg + FAMB, (1)

where:

M =
(

m 0
0 m

)
, C =

(
c 0
0 c

)
,

K =
(

k11 k12

k21 k22

)
, u =

(
uz

uy

)
, Fg =

(
mg
0

)
.

Fg represents the gravitational force and FAMB is the
external force vector from the AMB. Finally, the shaft
is assumed to be rotating at constant angular speed Ω̂.

The stiffness matrix can be written as:

K(u, t) = K0(u, t) + ∆K(u, t), (2)

where K0 represents the stiffness matrix of uncracked
shaft and ∆K is the additive stiffness matrix that de-
scribes the change in shaft stiffness with increasing
damage. Typically the stiffness of the shaft is reduced
with increasing damage and this degradation grows
with increasing damage. Although we seek to relate the
dynamics of this model to the magnitude of the shaft
crack we make no attempt here to relate the crack ge-
ometry with changes in stiffness. Instead we focus on
the dynamical behavior of the system as the stiffness
changes.

The displacement vector can also be decomposed
as:

u(t) = u0 + u1(t), (3)
where u0 is the static deflection of the uncracked shaft
due to gravity.In terms of u1 the equations of motion
become:

M ü1+C u̇1+(K0 + ∆K)u1 = −∆K u1+FAMB. (4)

The small vibrational movement will not affect the ad-
ditive stiffness matrix provided |u0| � |u1(t)|. There-
fore, ∆K can be assumed to be periodically time-
variant.

2.2 Shaft Stiffness
For a breathing crack, which opens and closes once
per shaft revolution, the stiffness matrix is periodically
time-varying. Unfortunately, the development of an ex-
act stiffness model of a “breathing” crack from a funda-
mental model is quite complicated. Instead, the stiff-
nesses in rotating coordinate system (ξ, η) are consid-
ered to be [7]:

(
kξ

kη

)
=

(
k0 − ∆kξ

1+cos(θ)
2

k0 − ∆kη
1+cos(θ)

2

)
. (5)

ξ is the crack direction coordinate and η is the cross-
crack direction coordinate. θ is the angle between ∆u
and ξ directions. ∆kξ and ∆kη are the reduction of
stiffness at fully open crack in ξ and η directions respec-
tively. These quantities can be either experimentally
determined or empirically related to the crack length
and hence the “health” of the shaft. For small cracks
(less than the radius of the shaft), kη can be approxi-
mated as simply k0 [7] and the stiffness matrix of the
cracked rotor in the stationary coordinate system can
be written as:

K = k0

(
1 0
0 1

)
− ∆kξ

4

(
f(θ) g(θ)
g(θ) h(θ)

)
,

where:

f(θ) = 1 +
3
2

cos(θ) + cos(2 θ) +
1
2

cos(3 θ),

=
N∑

n=0

pn cos(nθ),

g(θ) =
1
2

sin(θ) + sin(2 θ) +
1
2

sin(3 θ),

=
N∑

n=0

qn sin(nθ),

h(θ) = 1 +
1
2

cos(θ) − cos(2 θ) − 1
2

cos(3 θ),

=
N∑

n=0

rn cos(nθ).

2.3 Harmonic AMB Forcing
The critical frequency of the shaft oscillations is√

k0/m. The opening and closing of the crack, syn-
chronous with the rotational speed Ω̂ of the shaft, in-
troduces a time-varying stiffness. Further, assume that
the AMB forcing varies harmonically, so that:

FAMB =
(

F0,z cos(Ω̂2 t)
0

)
.
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Notice that forcing is applied in the z direction only.
Scaling the coordinates by the static displacement δst =
mg/k0 and time with the critical frequency, so that
τ =

√
k0/m t, the equations of motion become:(

z̈
ÿ

)
+ ε κ

(
ż
ẏ

)
+

(
z
y

)
+ ε

(
α1z

3

α2y
3

)

−ε β

(
f(Ω τ) g(Ω τ)
g(Ω τ) h(Ω τ)

) (
z
y

)

= εβ

(
f(Ω τ)
g(Ω τ)

)
+

(
γ cos(Ω2 t)

0

)
. (6)

with:

Ω =
Ω̂√
k0/m

, Ω2 =
Ω̂2√
k0/m

,

εβ =
∆kξ

4 k0
, εζ =

c√
k0 m

, γ =
F0,z

k0 δst
.

The magnitude of the time-varying stiffness is ε β.
Moreover, β is identified as the “damage” parameter be-
cause it represents the magnitude of the stiffness degra-
dation assumed to scale with the damage in the shaft.
Finally, the AMB forces appear in the model as exter-
nal excitation, of amplitude γ and frequency Ω2. The
quantity ε is simply a nondimensional scaling param-
eter used to indicate the relative sizes of the various
parameters.

The resulting mathematical model can be de-
scribed as a two coupled nonlinear equations with both
parametric and external excitation. In the analysis that
follows, a combination resonance is identified between
the critical shaft frequency, the shaft rotational speed,
and the external frequency of the AMB excitation. The
amplitude of the oscillations at this resonant operation
is proportional to both the magnitude of the exter-
nal excitation γ and, more importantly, the magnitude
of the shaft damage, described by the nondimensional
quantity εβ in the above equation. Finally, this re-
sponse is sensitive to changes in Ω2, the frequency of the
AMB excitation. This is expected to provide a means
of identifying marginal damage states.

3 MULTIPLE SCALE ANALYSIS
Multiple scale analysis [8] is applied to analyze the dy-
namical behavior of Eqs. (6). Assuming the solution to
these equations takes the form u1 = u1,0 + ε u1,1 + · · · ,
then the first order solution takes the form:

z0 = A1(η) cos (τ + φ1(η)) + Γ cos(Ω2 τ), (7)
y0 = A2(η) cos (τ + φ2(η)) (8)

where:
η = ε τ, Γ =

γ

1 − Ω2
2

.

Resonance Condition Description

1 Ω = 1
3
, 1

2
, 2

3
, 1, 2 parametric

2 Ω2 = 1, 3 external

3
Ω2 = |nΩ − 1|

n = 1, 2, 3
combination

Table 1: Resonant forcing conditions.

Note that η represents a slow time-scale. The slowly
varying amplitude and phase, Ai and φi respectively,
are determined from the slow flow equations obtained
from the O(ε1) equations by equating the secular terms
to zero. However, in this system secular terms only ap-
pear for resonant forcing conditions, as shown in Ta-
ble 1. This work focuses on the combination resonance
as a mechanism for identifying the damage parameter.
Specifically, can we estimate the magnitude of the dam-
age parameter β by varying only Ω2 and γ—the param-
eters associated with the external AMB forcing?

The first resonance condition depends on Ω and β.
However, we assume no control over Ω so that this con-
dition cannot be imposed. Therefore the AMB forcing
cannot be varied to satisfy the first condition (para-
metric resonance). Second resonance condition does
depends on Ω2. However, the predicted response from
the multiple scales analysis is independent of the dam-
age parameter, β. This condition cannot be used to
characterize the magnitude of β from vibration data.

For Ω2 = Ω�
2 ≡ |n Ω − 1|, the combination reso-

nance condition can be satisfied for any value of Ω, the
rotational speed of the shaft. Moreover, the amplitude
of the response scales linearly with β. Upon application
of the method of multiple scales, the resulting slow flow
equations in the z direction can be written as:

dA1

dη
= − 1

Ω�
2

[
Γz,n sin φ1 +

ζ A1

2

]
,

dφ1

dη
= − 1

Ω�
2

[
Γz,n

A1
cos φ1 − σ2

Ω�
2

−3 α1

4

(
A2

1

2
+ Γ2

)
+

β p0

2

]
,

where σ2 is the detuning from the exact resonance, that
is Ω2 = Ω�

2 + ε σ2, and:

Γz,n =
pn

4
Γ β.

Similar results can be derived for the vibration ampli-
tude in the y direction.
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Figure 1: Damage effect on response amplitude versus de-
tuning curves β = 1.5 (solid), 1.0 (dash-dotted), 0.5 (dot-
ted) (α1 = 1.0, γ = 1.5, ζ = 0.2, Ω = 2π, Ω2 = 2).

Stationary solutions of the original Eqs. (6) corre-
spond to equilibrium points in this system. From this,
the amplitude-detuning relationship is obtained as:

σ2

Ω�
2

=
β p0

2
− 3 α1

4

(
A1

2

2
+ Γ2

)
±

√
Γ2

z,n

A2
1

− ζ2

4
, (9)

and one may also solve for the stationary phase φ1. In
the absence of the nonlinearity (α1 = 0), the response
amplitude becomes:

A1 =

√√√√ pn Γ β

ζ2 +
(
2 σ2

Ω�
2
− β p0

)2 .

Unfortunately, for α1 �= 0 the relationship between A1

and σ2 cannot be inverted to determine A1 in terms of
σ2. Instead, Eq. (9) is solved numerically for A1 and
representative results are shown in Figure 1.

The maximum amplitude of the response is deter-
mined to be:

A�
1 =

2 Γz,n

ζ
=

(
pn Γ
2 ζ

)
β, (10)

which occurs at a detuning:

σ�
2

Ω�
2

=
β p0

2
− 3 α1 Γ2

8

((
pn β

2 ζ

)2

+ 2

)
. (11)

Thus the when the combination resonance is excited the
amplitude of the observed vibrations that occur at the
critical frequency of the shaft scale with β, the damage
parameter. The maximum amplitude can be used to
detect and quantify the damage. Notice that the max-
imum amplitude of the response scales linearly with β
and is independent of α1, the strength of the nonlinear-
ity.
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Figure 2: z direction response and its FFT (α = 1.0, β =
1.0, γ = 1.5, ζ = 0.2, Ω = 2π, Ω2 = 2.5).
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Figure 3: Comparison of the FFT amplitudes at resonant
and non-resonant forcing frequencies with Ω2 = 2.5 (solid)
and Ω2 = 5.338 (dashed) (α = 1.0, β = 1.0, γ = 1.5,
ζ = 0.2, Ω = 2π).

4 FOURIER ANALYSIS

Numerical solutions of Eqs. (6) are obtained using a
4th-order Runge-Kutta algorithm. Figure (2) depicts
an instance of such solution in the z directions. Also,
a Fast Fourier Transform (FFT) is used to quantify
the amplitude variation with respect to the variation
of different system parameters. Notice that the FFT
of the solution in the z direction has two peaks: one
at shaft critical frequency and a second at the external
excitation frequency.

4.1 Excitation at combination resonance

We present a novel approach to quantify the shaft dam-
age by relating the amplitude of the vibration response
with the damage parameter β. In Eqs. (6), we make
use of the combination resonance condition as shown
in Figure (3)—the amplitude at the resonant external
frequency (Ω2

∼= 5.3) is considerably higher than that
at an arbitrary frequency (Ω2 = 2.5) away from the res-
onant frequency. It is noted that (i) rotational speed
Ω is assumed to be away from the parametric resonant
frequency, and (ii) Ω2 is chosen such that it is away
from external resonant frequency (see Table 1) to avoid
additional resonant interactions.
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a. Ω2 = 5.1
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b. Ω2 = 5.34
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c. Ω2 = 5.7

Figure 4: Comparison of FFT amplitudes below, at and
above resonant forcing frequencies for both undamaged and
damaged systems (α = 1.0, γ = 1.5, ζ = 0.2, Ω = 2π).
Solid and dashed lines represent undamaged (β = 0) and
damaged (β = 1.0) systems respectively.

4.2 Proposed resonance based approach

In both healthy and damaged systems a peak will oc-
cur at the critical frequency. However, we are interested
in the variation of the magnitude at the frequency as
system moves from undamaged to to damaged state.
This is demonstrated in Figure 4. Three excitation fre-
quencies were chosen at and around the combination
resonance: Ω2 = 5.1 (below resonance), Ω2 = 5.34 (res-
onance), and Ω2 = 5.7 (above resonance). Expectedly,
both undamaged and damaged systems show a peak
at critical frequency. The difference in the magnitude,
however, is very significant. The magnitude at the exci-
tation frequency is same for both undamaged and dam-
aged cases. We also observe that FFT magnitude at
forcing frequency is insensitive to either change in the
forcing frequency, or damage status of the system.

In Figure 4 there can also be seen a slight shift
in the critical frequency with increasing damage as a
direct result of variation of the shaft stiffness. The
crack leads to a reduction in stiffness and an increase in
damping [9], which in turn leads to changes in natural
frequencies (as happens to the critical frequency here),
modal damping and modal shape components. While
this aspect of the response (variation in modal quanti-
ties) has been used as a tool to identify and quantify
damage [10, 11, 12], the dynamical behavior induced
by the combination resonance is much more sensitive
to the damage parameter β.

Therefore, usage of combination resonance condi-
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Figure 5: Maximum of difference between damaged FFT
amplitude and undamaged FFT amplitude in the vicinity of
resonant forcing frequency (α = 1.0, β = 0.0, 1.0, γ = 1.5,
ζ = 0.2, Ω = 2π).
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Figure 6: Peak at resonance as damage grows (α = 0.5,
γ = 1.5, ζ = 0.2, Ω = 2π).

tion shows very promising results. To strengthen our
premise, the damage sensitivity of the time-series needs
to be determined at other frequencies. Each of the three
lines in the Figure 5 shows the maximum of the differ-
ence between the damaged and the undamaged magni-
tudes in the in the vicinity of resonant forcing frequency
(Ω2 = 5.34). The figure clearly shows that when the
system is not excited at resonant frequency, damage
sensitivity is nearly negligible—the maximum damaged
and undamaged FFT amplitudes are nearly identical.
Only near the resonant forcing is the response sensitive
to the damage.

Because of the nature of the dynamic system, this
peak value (vibration amplitude) is sensitive to the
damage of the shaft, quantitatively, the size of the crack
(β). Intuitively, one expects higher (in amplitude) vi-
bration for higher value of β. If the peak amplitude
values are plotted against the damage parameter β, a
nearly linear relationship is seen in Figure 6. This is
in agreement with the prediction by the multiple scale
analysis.
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Figure 7: Active magnetic bearing test rig used for shaft
crack testing.

5 EXPERIMENTAL TEST RIG

A test rig is currently under development to experimen-
tally investigate new crack shaft detection procedures
described here. The test rig uses a steel shaft with
two balance disks, and is supported in rolling element
bearings at the inboard and outboard locations. The
test assembly shaft has a constant diameter of 15.9 mm
(0.625 in) and a bearing span of 558.8 mm (22 in). One
or two AMB actuators can be retrofit at almost any
axial location for their use in the new health monitor-
ing approach. Each AMB is an 8-pole radial heteropo-
lar design with an air gap of 0.38 mm (0.015 in) and
a load capacity of 66.5 N (30 lbs). In addition, the
magnetic stator is 60.3 mm (2.375 in) long, and has an
inner diameter of 47.6 mm (1.875 in). The partial test
rig assembly is shown in Figure 7. Multiple rotor shafts
with various crack configurations will be placed in the
test rig for investigation of the new health monitoring
techniques. Initially, shafts with notches representing
cracks will be examined, followed by an attempt to cre-
ate a breathing crack scenario by using a wire Electrical
Discharge Machine (EDM).

The new health monitoring procedure involves ex-
amining rotor responses (outputs) due to multiple in-
puts from the AMB actuators. This is similar to tra-
ditional modal analysis techniques except that now the
structure under investigation is rotating, and the input
from the actuator can be a traditional “impact” or more
complex such as a sinusoidal force input of varying fre-
quency and/or amplitude. The ability of the actuator
to provide multiple repeatable force inputs to the sys-
tem allow for significantly more useful monitored data
for applying advanced analysis techniques like the ap-
proach described here.
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