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ABSTRACT
  Designing controllers is generally based on linear or
non-linear control theory.  An example of the former is the
PID control that is the most popular and widely used in
industries.  An example of the latter is Variable Structure
Control (VSC).  In this study, we added the VSC to an
AMB-equipped flexible rotor under the PID control.  We
used the sensitivity function, a way to potentially evaluate
the stability margin of the AMB linear system by applying
to the non-linear system of the VSC on the system stability.
In order to study the VSC’s stability effect quantitatively,
we selected the following parameters: s and ∆ of

xxxxssignk ])[( &+∆ , and the property of a front-stage

filter.

1.INTRODUCTION
  Recently, Active Magnetic Bearings (AMBs) featuring
non-contact support is getting popular for industrial
rotating machinery, and many studies for improving the
performance are being conducted[1].  AMB controller
design needs to sufficiently damp critical speeds appearing
within the rated speed.  Since a flexible rotor has lots of
high-frequency eigen modes, it is easy to oscillate at the
bending mode frequencies.  Therefore, it is very important
to suppress these modes for the system stability. Controller
design is generally based on linear control theory.  A
typical example of the former is the PID control that is the
most popular and widely used in industries.  When a
controller is designed according to the PID control, the
phase lags of the plant and controller are taken into
consideration to give some phase leads to the high
frequencies[2]. Non-linear means for AMB control has
been  recently introduced. An example of the non-linear
control is VSC including bang-bang and sliding mode
control.  The VSC changes control structure according to
a switching rule specified arbitrarily.  For such control,
many reports have been provided[3,4].  The purpose of
this paper is to exert non-linear control force having
variable structure on an AMB-equipped flexible rotor being
levitated by the PID linear control to check how much the
non-linear force contributes to the stability through the
sensitivity function.
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Figure 1: Structure of a flexible rotor
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Figure 2: Mode shapes of the flexible rotor 　(free/free)

2. EXPERIMENTAL SYSTEM
2.1. Experimental system:  Figure 1 roughly
illustrates the flexible rotor we used. The shaft diameter is
34 mm, the length is 1,316 mm, and the mass is 31.4 kg.
The rotor has three disks in the center and two disks at both
ends so as to keep the balance during rotation. Moreover,
thrust AMB and motor rotors are attached to the left and
right ends respectively.  Figure 2 shows the vibration
modes of the flexible rotor from Nc1 to Nc4.

2.2. Description of the flexible rotor:  Figure 3 is
the critical speed map of the rotor. The vertical and
horizontal axes show the natural frequency of the rotor and
the stiffness of the AMB respectively, and the dashed line
indicates the estimated stiffness of the PID control.
Accordingly, the critical speeds are derived from the
intersections of the solid (natural frequency) and dashed
(AMB’s stiffness) lines.
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Figure 3: Critical speed map
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Figure 4: Block diagram of digital controllers

3. LINEAR CONTROLLER
3.1. Controller configuration:  Figure 4 is a block
diagram of the controllers we used. They are digital
controllers using a Digital Signal Processor (DSP) and
operating at a sampling frequency of 20 kHz. The control
method is side-by-side control. The displacement of the
AMB-equipped flexible rotor is measured by the sensors
arranged close to each radial AMB. The main controller is
designed according to the PID control and can levitate the
rotor. The additional controller has variable structure,
which will be described in the next section. Let us examine
the effect of adding the VSC to the PID control through the
sensitivity function. Note that the VSC is added only to
Side 1 and that Side 2 is always controlled only by the PID
control.
3.2. Digital controller configuration:  Figure 5 is a
block diagram of the digital controller.  The sensor
measures the AMB’s displacement and feeds the resulting
signal to the DSP via the sensor amplifier and low-pass
filter (5 kHz).  The DSP converts the displacement signal
to the equivalent control force and then sends the
corresponding value to the PWM amplifier (2A/V).  The
PWM amplifier lets the corresponding current flow through
the coil to yield the AMB force.

Sensor Gain

10000
V/m

Anti-alias Filter

DSP

2 A/V 51.6 N/A

(gap=0.5mm)

Digital Signal Processor

Power
 Amplifier Electromagnet

Flexible Rotor

5kHz LPF

(Sampling Frequency 20kHz)

Flexible Rotor

Figure 5: AMB system control block diagram
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Figure 6: Bode plot of the PID controller’s
transfer function

3.3 PID controller configuration:  Figure 6 is the
Bode plot of the transfer function (Gr) of the PID controller.
Since the measured phase lag of the plant is added to the
phase plot, it represents the phase of the overall system.
The controller uses not only the PID control but also a
Phase Bump Filter (PBF) and a second-order Low-Pass
Filter (2nd LPF).  Figure 6 shows that compared to the use
of only the PID control, the additional PBF further
advances the phase at high frequencies, that is, it gives up
to the seventh natural frequency (680 Hz) phase leads.
The transfer function of the PID controller having the PBF
is given by the following equation:
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 GI, GPL, G2ndLPF, and GPBF are the transfer functions of the
integration circuit, phase lead circuit, 2nd LPF, and PBF
respectively, and each is represented as follows:
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3.4. Static levitation test with the PID control:     
  Figure 7 is a block diagram of the closed-loop control
system we used.  During levitation, signals are measured
at the input/output points from � to �.  A excitation
signal is supplied to �, and the resulting signals are
measured at � and �.  Namely, the plant transfer function
Gp is represented as �/�.  Moreover, measuring the
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resulting signal at � gives the open-loop transfer function
Go = �/�.  The PID controller mentioned before statically
levitates the AMB-equipped flexible rotor.  Figures 8 and
9 show the measured Gp and Go respectively, and the
former clearly indicates the peaks of each mode.  Figure
10 is the Nyquist plot of Go.  Since the Nyquist plots of
Nc4 and Nc5 are sufficiently apart from the critical point (-
1,0), this shows that both modes are stable.
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Figure 7: Block diagram of the AMB system
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Figure 8: Bode plot of the plant transfer function
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Figure 9: Bode plot of the open-loop transfer function
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Figure 11: Sensitivity function of the PID system

3.5. Sensitivity function measurement:
 The sensitivity function[5] is given by the following
equation:

o
s G

G
+

=
1

1 （2）

The sensitivity function Gs is the reciprocal of the distance
from the critical point (-1,0) to Go.  Therefore, the shorter
the distance, the greater the Gs value, and the longer the
distance, the smaller the Gs value.  This means that if the
rotor stably levitates a little, the open-loop transfer function
Go and the sensitivity function Gs can be measured to
evaluate the stability margin through the resulting
sensitivity function.  Gs is represented as �/� in Figure 7.
Figure 11 shows the resulting Gs during static levitation
with the PID control. The peak at 50 Hz is ignored because
it is caused by power source noise.  The figure also
presents the sensitivities of each mode from Nc1 to Nc7.

4. ADDITIONAL VSC
4.1. VSC design:  The ＶSC controller we employed is
given by the following equation:
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   (3)

 Here, σ is a switching line changing the control force.
Since the sign of the control force is changed at σ  =0 and
x=0, the VSC’s property changes four times in the overall
system.  Figure 12 shows these changes on the phase
plane.  Since the structure of equation (3) changes
according to the parameter s, it is possible to arbitrarily
specify an area where positive and negative springs are
added. The parameter k is a constant providing the AMB’s
stiffness when the rotor is levitated by the PID control,
while the parameter ∆  is a variable determining the VSC’s
stiffness against the PID control.  In general, the velocity
amplitude A’ detected along with the vibration amplitude A
is represented as A'=ωA where ω is the frequency.
Accordingly, high-frequency speed is dominant in multiple-
mode vibration.  In this study, using the 2nd LPF for the
input signal to the VSC eliminates the effect of the high
frequencies as shown in Figure 4, and the effect of a
specific mode frequency is examined.  Figure 13 shows
the characteristics of the 2nd LPF we used.
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Figure 12: Phase portraits for the VSC model
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4.2. VSC damping effect: Figure 14 illustrates a 1DOF
system when equation (3) is introduced theoretically.  The
system has half the rotor mass and a stiffness
corresponding to a natural frequency of 30 Hz.  In
equation (3), ∆ is 0.3 and a control force of about 30
percent of the AMB’s stiffness is exerted.  The figure also
indicates the resulting step response, which shows that
equation (3) can damp the system effectively.

5. EVALUATING THE STABILITY MARGIN
WITH NON-LINEAR CONTROL
5.1. Evaluation criteria of ISO: Subsection 3.6
described how to measure the sensitivity function while
ISO CD 14839-3 defines the criteria for evaluating the
stability margin of a system having an AMB-equipped
flexible rotor through the sensitivity function. Table 1 lists
the allowable sensitivities specified by ISO. Of all eigen
modes, the mode having the highest sensitivity is found,
and its zone provides the stability margin of the overall
system. According to ISO CD 14839-3, the PID control

system shown in Figure 11 has a maximum sensitivity of
10.16 dB at Nc1, so it is classified into Zone B.

Table 1: Peak sensitivity at zone limits
Zone Peak sensitivity

level factor

A/B
B/C
C/D

8dB
12dB
14dB

2.5
4
5

5.2. Stability margin evaluation test: Equation (3)
has three parameters: the gain ratio ∆ of the PID control,
the coefficient s of the switching line, and the corner
frequency f2nd of the 2nd LPF.  In this test, we examined
how the sensitivity function was changed when ∆ = 0.3 and
the switching line coefficient and corner frequency varied.

5.2.1. Effect of the switching line coefficient: We
used three variable structure controllers having different
slopes to measure the sensitivity functions.  Figure 15
shows the resulting sensitivity functions. Letting the corner
frequency of the 2nd LPF (Figure 13) be 150 Hz and the
coefficient of the switching line be s=2π fs (rad/s), the
effect of fs is examined. The figure shows that as fs shifts
from 100 Hz to 200 Hz, the 200 Hz sensitivity reduces and
is finally lower than the sensitivity given by the PID
control.  As shown in Figure 13, the 2nd LPF has a high
gain near the corner frequency. These results mean that the
VSC is affected by the coefficient of the switching line and
the corner frequency.
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Figure 15: Sensitivity function of the system (PID + VSC)
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Figure 16: Sensitivity function of the system (Case 2)
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Table 2: Specifications of the controller
f2nd (corner frequency

of the 2nd LPF)
fs (switching
frequency)

Case 1 150 Hz 300 Hz
Case 2 230 Hz 460 Hz
Case 3 400 Hz 800 Hz
Case 4 500 Hz 1000 Hz
Case 5 610 Hz 1220 Hz
Case 6 640 Hz 1280 Hz

Table 3: Differences from the PID peak
sensitivities in each case

Nc1 Nc2 Nc3 Nc4 Nc5 Nc6 Nc7

10.16

-4.57

-5.07

-4.46

-4.19

-3.21

-4.11

4.62

-

-

-

-

1.14

-

5.47

1.91

1.23

1.08

-

-1.21

-

4.57

-1.41

3.85

1.84

1.59

-

1.48

6.74

-

-2.2

4.58

3.77

2.27

2.96

4.76

-

-1.08

-1.49

-2.47

-

-

8.84

-1.28

-

-1.69

-2.05

-2.78

-2.28

PID

Case1

Case2

Case3

Case4

Case5

Case6

5.2.2. Effect of corner frequency of the 2nd LPF:   
  Based on the results mentioned in the previous
subsection, the frequency fs of the switching line coefficient
was set twice as high as f2nd to ensure that the VSC was
effective.  We then measured the sensitivity function
when f2nd varied.  Table 2 shows the parameter values of
the VSC. Figures 16 and 17 show the resulting sensitivity
functions of Cases 2 and 3 respectively.  Both indicate that
the sensitivity decreases at the frequency nearest to and
higher than f2nd and increases at lower frequencies.  Table
3 lists the sensitivity differences between this test and the
PID control shown in Subsection 3.6.  As a difference of
±1 dB falls within the range of possible error, it is shown
by a minus “−” symbol in the table.  The table shows that
Nc1 becomes lower in all cases and that almost all
sensitivities decrease at frequencies higher than f2nd and
increase at frequencies lower than f2nd.  Based on these
results, we conducted the same test with other parameters,
but we found no parameter that was able to reduce the
sensitivities over all frequencies.

6.ROTATION TEST
  Figure 18 shows the rotation test results.  In both cases
of the PID control and of PID + VSC, the rotor was able to
turn at up to 70 rps via the second rigid mode.  The
vibration amplitude of PID + VSC was smaller than that of
only the PID control.  We will add balancing technologies
to overcome the bending critical speed in the future.
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Figure 18.Resonance plot for each case

7. CONCLUSIONS
  In this study, we added the VSC to the AMB equipped
flexible rotor under the normal PID control.  We
employed the combination of the VSC and 2nd LPF to
check how the corner frequency of the filter and the
switching line coefficient of the VSC affect the stability
margin through the sensitivity function.  The results are
described below.
1. The VSC is very effective around the corner frequency if
the 2nd LPF is used together.
2. The coefficient of the switching line σ greatly varies
around each natural frequency, and our test shows that the
greater the slope, the better the result.
3. The sensitivities of the rigid modes and the modes higher
than the corner frequency of the 2nd LPF decrease, but the
sensitivities of the modes nearest to and lower than the
corner frequency increase.
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