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ABSTRACT
The coupling between angular and radial motion

in rotors supported by AMB has been studied in a
previous paper by the Authors. The present paper
generalized these results to conical AMB actuators
taking into account also radial-axial coupling. The
aim is to assess how much these effects influence the
dynamics in the small of the rotor but does not re-
strict to the traditional linearization. The linearized
model is studied together with the complete nonlin-
ear one, to deal also with second-order effects.

INTRODUCTION
Active magnetic bearings are usually modelled

as linear system, but they actually are intrinsically
nonlinear. The reasons for nonlinearities are many,
namely the nonlinear dependence of the magnetic
forces from the displacements and currents in open
loop and the nonlinearities of all components of the
control loop [1, 2]. The aim of the present paper
is building a mathematical model of a general coni-
cal heteropolar bearing, taking into account the first
two causes of nonlinearity. The control loop can be
closed by accounting for other sources of nonlinear-
ity, such as saturation of the power amplifiers and
of the sensors. The model can be linearized, yield-
ing results close to those obtained using the conven-
tional formulae; however some axial-radial coupling,
usually neglected, is present also in the linearized
solution.
Although devised for heteropolar configurations,

the model can be modified to deal with homopolar
bearings. An example related to a satellite reaction
wheel on two six-poles conical bearings shows how
the present model can be used for a specific applica-
tion.

MAGNETIC CIRCUIT
Consider one of the electromagnets of a conical

magnetic bearing (Fig. 1a). The geometrical config-
uration is general for heteropolar bearings (if δ = 0
a cylindrical bearing is obtained), while for homopo-
lar bearings some modifications to the model are
needed.

Figure 1: (a) Geometric definitions. (b) Displace-
ment of the journal in the midplane of the bearing.
(c): Axial displacement and rotations.

Point O is the center of the bearing. The com-
ponents of the displacement of the journal are ux,
uy and uz and its rotations about axes x and y are
φx and φy. Under the small rotations assumptions,
the order in which the two rotations are considered
needs not to be stated [2].
The magnetic circuit can be studied by neglect-

ing the reluctance of the iron parts of the circuit.
The total reluctance then reduces to that of the two
airgaps, which are equal only if the shaft is in a sym-
metrical position with respect to xz plane (uy and
φx vanishingly small). In general

R = R1 +R2 , (1)
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subscript 1 referring to the airgap with y > 0.
The reluctance Rj can be computed as

1

Rj
=

Z
A

µ0
d
dA = µ0

Z h/2

−h/2

Z θ2

θ1

r(z)

d(z, θ) cos (δ)
dz dθ .

(2)
where A is the area of the j-th pole piece and d(z, θ)
is the local air gap thickness. The latter can be
evaluated with good approximation as

d = [c− uz tan (δ)− ξ cos (θ)− η sin (θ)] cos (δ) ,
(3)

where ξ = ux + φy

h
z

cos2(δ) −R tan (δ)
i

η = uy − φx

h
z

cos2(δ) +R tan (δ)
i −c < ξ < c

−c < η < c

The integration along angle θ can be performed
in an approximated way, obtaining

1

Rj
≈ µ0

Z h/2

−h/2

R+ z tan (δ)

Sj + Tjz
dz , (4)

where
Sj =

©
αj [c− uz tan (δ)] + [uy +Rφx tan (δ)]βj+

+
£
ux −Rφy tan (δ)

¤
γj
ª
cos2 (δ)

Tj = −φxβj + φyγj .
(5)

and αj , βj and γj are three constants which depend
only on the angular width and position of the pole
piece (see Appendix 1). θ1 and θ2 are here consid-
ered as independent from z, which yields a pole piece
circumferentially thicker at the larger diameter. αj ,
βj and γj can be considered as functions of z, but
this would result in much more complex formulae,
without substantial increase of the accuracy of the
model.
If the electromagnet is located symmetrically with

respect to x-axis, it is possible to define the values
of the parameters for the the whole electromagnet

α = α1 = α2 , β = β1 = −β2, γ = γ1 = γ2 .
(6)

By performing the integration, equation (4) be-
comes

1

Rj
= µ0

·
h tan (δ)

Tj
+

RTj − Sj tan (δ)

T 2j
ln

µ
2Sj + Tjh

2Sj − Tjh

¶¸
.

(7)

If the axis of the journal remains parallel to that
of the bearing, Tj vanishes and equation (7) reduces
to

1

Rj
= µ0

Z h/2

−h/2

R+ z tan (δ)

Sj
dz =

µ0Rh

Sj
. (8)

The magnetic flux density for the j-th pole is
linked to the number of turns of the coil N and the

total current i by the relationship [3]

Bj (z, θ) =
Rj

R1 +R2
µ0NI

d (z, θ)
. (9)

The magnetic energy is then

E = 1

2µ0

X
j=1,2

·Z
V1

B2 dV

¸
. (10)

Since the magnetic flux density is constant along
the lines perpendicular to the pole pieces (with the
above mentioned approximations), the volume inte-
gral can be transformed into an area integral

E = µ0N
2i2

2 (R1 +R2)
2

X
j=1,2

"
R2
j

Z h/2

−h/2

Z θ2

θ1

r

d cos (δ)
dz dθ

#
.

(11)

By comparing equation (11) with equation (2),
it follows

E = N2i2

2 (R1 +R2)
. (12)

MAGNETIC FORCES
The forces and moments exerted on the journal

are

Qi =
∂E
∂qi

= − N2i2

2 (R1 +R2)
2

∂ (R1 +R2)
∂qi

. (13)

By introducing the permeance C = 1/R, the ex-
pression of the magnetic energy becomes

E = N2i2C1C2
2 (C1 + C2) . (14)

The generalized forces are then

Qi =
N2i2

2(C1+C2)2
h
C22
³
∂C1
∂T1

∂T1
∂qi

+ ∂C1
∂S1

∂S1
∂qi

´
+

+C21
³
∂C2
∂T2

∂T2
∂qi

+ ∂C2
∂S2

∂S2
∂qi

´i
.

(15)

BEARING MODEL
A bearing is made of a number n of electromag-

nets. The forces and moments exerted by the i-th
electromagnet whose x-axis is rotated by angle Γi
with respect to the X-axis of the bearing can be
written in the reference frame XY z of the latter as

QiXY z = RiQixyz , (16)

where Q = [Fx, Fy, Fz, Mx, My]
T and

Ri =


cos (Γi) − sin (Γi) 0 0 0
sin (Γi) cos (Γi) 0 0 0
0 0 1 0 0
0 0 0 cos (Γi) − sin (Γi)
0 0 0 sin (Γi) cos (Γi)


ixyz

(17)
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The forces can be linearized about any position
as

Qi = Q0i + J0iq , (18)

where q is a column matrix in which the general-
ized displacements are listed, Q0i is the value of Qi
computed in the reference position and J0i is the
Jacobian matrix ∂Qik/∂qj computed in the same
position. Owing to the intricacy of the general ex-
pressions of the forces and of their derivatives, both
Q0i and J0i are better computed numerically in any
particular case. If the behaviour of the bearing is
uncoupled, J0 reduces to a diagonal matrix.
The linearized expression of the total force is

QXY z =
nX
i=1

RiQ0i+

Ã
nX
i=1

RiJ0iR
T
i

!
qXY z , (19)

where also the displacements qi must be expressed
in the reference frame of the bearing

qiXY z = Riqixyz . (20)

Equation (19) is linear in q but not in the cur-
rents ii. It can be linearized by introducing a bias
current ib, a compensation current i0, to balance
static forces, and a control current ic[1, 2]

ii = ibi + i0i + ici . (21)

Since the control current is assumed to be small
if compared to the other two components, the force
can then be expressed as

QXY z = Qb0 −KolqXY z+Gcic , (22)

where

Qb0 =
nX
i=1

RiQ
0
0i (ibi + i0i)

2 (23)

is the force exerted by the bearing at zero displace-
ment and control current,

Kol =
nX
i=1

(ibi + i0i)
2
RiJ

0
0iR

T
i (24)

is the open-loop stiffness matrix (negative defined)
and Gc is the current gain matrix having 5 rows and
as many columns as there are coils in the bearing

Gc = 2
£
...

©
RiQ

0
0i (ibi + i0i)

ª
...
¤

(25)

and Q0
0i = Q0i/i

2
i and J

0
0i = J0i/i

2
i .

EXAMPLE: RIGID-BODY DYNAMICS OF A RE-
ACTION WHEEL ON CONICAL AMBs
The system is described in detail in [4]. The main

inertial rigid-body characteristics of the system are:
mass m = 0.821 kg, polar moment of inertia Jp =
0.0374 kg m2, transversal moment of inertia Jt =

0.0194 kg m2. The distance between the midplanes
of the bearings is l = 27 mm, with the centre of mass
located at midspan (a = b = l/2). The relevant
data of the six-poles conical AMBs are: N = 96,
bias current ib = 0.2 A, average radius R = 29 mm,
length h = 7 mm, radial clearance c = 0.3 mm,
φ = 15◦, θ1 = 9◦, θ2 = 29◦. The values of the
parameters which approximate the reluctance of the
bearing are

α = 2.8648 , β = −0.9354 , γ = −2.7030 . (26)
Two cases will be considered: microgravity (no

static load) and Earth gravity, with the static load
supported by a single pole (x-axis directed upwards)
In the first case, no compensation current is pres-

ent. Since the center of mass of the rotor is at
midspan (a = b), in the other case the two bearings
are equally loaded and the only nonzero compensa-
tion current is i01 = 1.137 A.
The displacement vector qi at the i−th bearing

can be obtained from the displacement of the center
of mass as

qi = TiqG =


1 0 0 0 zi
0 1 0 −zi 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




ux
uy
uz
φx
φy


G

.

(27)
In the same way, the forces due to a bearing re-

ferred to a frame located in the center of mass are
obtained from those referred to the bearing itself as

fG = T
T
i fi . (28)

The open loop stiffness matrix (referred to the
center of mass) of the whole suspension is obtained
from those of the bearings as

Kol =
X
∀i

TT
i KoliTi . (29)

The mass and the gyroscopic matrices are

M = diag
£
m m m Jt Jt

¤
, (30)

G =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −Jp
0 0 0 Jp 0

 . (31)

The state space equation is then

ż = Az+Bcuc +Beue . (32)

where the dynamic matrix

A =

·
ΩM−1G M−1Kol

I 0

¸
(33)

depends on the spin speed.
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The control input is a column with six terms,
namely the control currents in the six coils and the
control input gain matrix is

B =

·
M−1TT

1Gc1 M−1TT
2Gc2

0 0

¸
(34)

The inputs to the control system are the airgap
widths measured by optical sensors. Consider a de-
centralized control strategy, where in each bearing
there are three optical sensors measuring the airgap
width at the centre of the electromagnet. The out-
put of the sensors can be computed from equation
(3)

yi = ksdz=0,θ=0 , (35)

where ks is the gain of the sensor.
This approximation can be quite rough, since the

optical sensors read the light flux through the air-
gap, which is proportional not to the airgap at the
center of the bearing, but in the narrowest point.
This however cannot be accounted for precisely in a
linearized model, so the model obtained above will
be used.
An ideal PD control is assumed in for the lin-

earized analysis. Also the derivatives of the sig-
nals obtained from the displacement sensors are thus
included in the outputs of the open loop system
and the output gain matrix C has 12 rows and 10
columns.
Closing the loop, the control inputs uc can be

written in the form

uc = −KcCz = −
£
kdI kpI

¤
Cz , (36)

where the derivative and proportional gains kd and
kp are overall gains referred to the controller and
the power amplifier and the identity matrices are of
order 6.
The closed loop linearized dynamics is then stud-

ied through the equation

ż = (A−BcKcC) z+Beue . (37)

If instead of using the state space approach the
equations were written in the configuration space, it
would have been clear that the closed loop stiffness
and damping matrices are slightly non symmetrical,
giving way to a gyroscopic matrix (of little impor-
tance, since a far larger true gyroscopic matrix is
already present) and to a circulatory matrix. They
can easily be justified by the observation that the
system is slightly non co-located, since the sensors
read the displacements not exactly in the same place
where the forces act. However the circulatory matrix
is too small to jeopardize stability.
The Campbell diagram can thus be computed

from the homogeneous equation associated to equa-
tion (37). Assuming

ks = 4 kV/m , kp = 250 A/V , kd = 0.025 A/Vs
(38)

the results computed for the 2 cases are shown in
Fig. 2, full lines. The unbalance grade assumed for

Figure 2: Campbell diagram, decay rate plot and
unbalance response (in terms of semi-axes of the el-
liptical orbit). Case 1: microgravity; case 2: 1g, with
1 electromagnet carrying the load. Full lines: con-
sidering couplig, present linearized model; dashed
lines: no coupling, usual model.

the computation of the unbalance response is G2.5,
a fairly large value for an application of this type.
The presence of coupling affects the Campbell

diagram and the decay rate plot in a non-negligible
way , while the linearized unbalance response is com-
puted by the two model with almost identical re-
sults. The system is found to be stable, at least in
the small.
The linearized results are however not much sat-

isfactory in the present case since the bearings are
not working in class A, i.e. the currents supplied by
the power amplifier change their signs in at least one
coil. This is linked to the large value of the unbal-
ance and the low value of the bias current assumed.
When this occurs (class B regime) the linearized
models lose their validity for the computation of the
unbalance response (the Campbell diagram and the
decay rate plot still hold for the motion in the small).
A nonlinear analysis was then performed with the
aim of assessing whether the system is stable in the
large and whether the bearings are able to compen-
sate for the unbalance forces.
The orbits of the center of mass obtained for case

1 are shown in Fig. 3. The four figures refer to the
linearized model, computed using the closed loop dy-
namic matrix, a model in which the linearization in
the currents and the displacements are performed in
the computation of the forces of the single electro-
magnets, a model with linearization in the displace-
ments but not in the currents and a fully nonlinear
model. The initial conditions on displacements are
x0 = y0 = z0 = 0.5 µm, φx0 = φy0 = 5 × 10−5 rad.
The initial velocities are assumed all equal to 0.
From the figure it is apparent that the nonlinear

solution is fairly different from the linearized one,
in that it contains higher order harmonics superim-
posed on the 1x component and that what really
matters is the nonlinear effect on the currents, while
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Figure 3: Case 1; orbit of the center of mass of the
reaction wheel. a) and b): linearized analysis per-
formed using the state space equation and comput-
ing the forces; c) numerical integration performed
by linearizing the functions of the displacements; d):
fully nonlinear analysis. The dashed lines represent
the orbit computed as a particular solution of the
complete linearized equation.

Figure 4: Total currents in the coils of one of the
bearings. The system works as a Class B bearing,
since all coils are periodically switched off.

the linearization on the displacements is acceptable.
Moreover the system is stable also in the large, since
the initial perturbation, larger than the steady state
displacement, does not affect the final solution.
This result is however not general and refers only

to the case studied. Actually in a way they were
easily predictable: the displacements are small, even
if the unbalance is fairly large, being about 1/30
of the airgap. The system works well within the
range in which linearization is acceptable. On the
contrary, the forces exerted by the coils and hence
the control currents, are fairly large. This causes the
bearing to work in Class B, as clearly shown in Fig.
4.
The simulation was repeated with a smaller value

of the unbalance, namely unbalance grade G 0.25.
The nonlinear solution for the unbalance response is
shown in Fig. 5.
As it is clear from Fig. 6, the bearings work in

Class A. That notwithstanding, the orbit contains
higher order harmonics and is close to a triangle.
Even if the bearings work in Class A, the non-

Figure 5: Orbit of the center of mass, angles φx and
φy and time histories of the displacements in x, y
and z directions. Case 1: microgravity (G=0.25).

Figure 6: Total currents in the coils of one of the
bearings. The system works as a Class A bearing.

linear effects due to the currents are strong, while,
also in this case, those due to displacements are neg-
ligible. Axial-radial coupling is not negligible, and
from the φx, φy plot it is clear that a low frequency
backward whirling starts. It takes a long time to be
significantly damped.
If the static load due to weight is considered the

bearings behave in an asymmetrical way, with the
highest stiffness is in the direction of the load (x-
direction). The results obtained in 1g conditions
with the load supported by one electromagnet, with
the same unbalance (G 0.25) and the same initial
conditions as in Fig. 5 are reported in Fig. 7 Only
the nonlinear solution is shown. Again, the bearings
work in Class A (Fig. 8).
This time the nonlinear effects due to the cur-

rents are almost as negligible than those due to dis-
placements, since the static components of the cur-
rents are much larger than the control currents. The
large value of the compensation current makes the
bearings much more stiff than in the microgravity
case, yielding a lower displacements and a more sta-
ble working of the system.

CONCLUSIONS
A model for heteropolar conical active magnetic

bearings which takes into account, although in a
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Figure 7: Orbit of the center of mass, angles φx and
φy and time histories of the displacements in x, y
and z directions. Case 2.

Figure 8: Total currents in the coils of one of the
bearings. The system works as a Class A bearing.

simplified way, geometrical nonlinearities has been
built. Such a model can be associated with non-
linear models of all components of the control loop
(sensors, controller, amplifiers) to perform numerical
simulations of the whole system. The main simpli-
fications still present are linked to neglecting stray
flux and the reluctance of the magnetic circuit when
compared with that of the airgap. Both assumptions
are reasonable, and the latter becomes unacceptable
only when a pole piece is close to contacting the
rotor, an occurrence which must be avoided and in
most cases is prevented by the presence of emergency
bearings. When, as usual, the minimum airgap can-
not become less than half the average airgap c, the
way in which the forces are computed and also the
simplifications introduced in the computation of the
reluctance are well acceptable.
The example related to a reaction wheel shows

that radial-axial coupling is not negligible even in a
case in which the center of mass of the rotor is at
midspan between two identical bearings, yielding a
further uncoupling between conical and cylindrical
modes. In this condition the axial modes couple
only with the conical ones, while cylindrical modes
remain uncoupled.
The reaction wheel is stable both in microgravity

conditions and in 1g operations, but in the former
case the low stiffness causes large amplitudes to be
present. Owing to the low bias currents (suggested
by the need of reducing power consumption), the

bearings work in class B and the system behaves in
a strongly nonlinear way. No linearized analysis is
possible. Only with unrealistic low values of unbal-
ance a linearized analysis can retain some meaning.
In 1g operation the system is much better be-

haved and, since the bearings work in Class A, the
linearized model predicts the behaviour of the sys-
tem with precision.
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APPENDIX 1: APPROXIMATION OF THE IN-
TEGRAL OF EQUATION (2)
Consider the following integral

I =

Z θ2

θ1

dθ

1− a sin (θ)− b cos (θ)
, (39)

where

−1 < a < 1 , − 1 < b < 1 , (40)

and assume that its value can be approximated as

I =
1

α+ βa+ γb
, (41)

The values of constants α, β and γ are computed
in the following conditions:

a = b = 0 ; a = ±a1 , b = 0 ; a = 0 , b = ±b1 ,
(42)

where a1 and b1 can be as large as 0.9.
When a = b = 0, α is readily obtained

α = 1
θ2−θ1 (43)

When a = ±a1, b = 0 the values I11 and I11 of
the integral is easily computed in closed form. In a
similar way the values I21 and I22 of the integral are
computed stating a = 0, b = ±b1. The values of β
and γ can be obtained using a least square approach,
yielding  β = 1

2a1

³
1
I11
+ 1

I12
− 2

I0

´
γ = 1

2b1

³
1
I21
− 1

I22
− 2

I0

´
.

(44)

In the case of a 8-pole bearing with θ1 = 11.25
◦

and θ2 = 33.75◦ and stating a1 = b1 = 0.9, it follows:

α = 2.5465 , β = −0.9780 , γ = −2.3484 .
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