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ABSTRACT

This paper deals with an application of H∞ control at-
tenuating initial-state uncertainties to the magnetic bear-
ing and examines the H∞ control problem, which treats
a mixed Disturbance and an Initial state uncertainty
Attenuation (DIA) control. The mixed H∞ DIA prob-
lem supplies H∞ controls with good transients and as-
sures H∞ controls of robustness against initial-state un-
certainty. On the other hand, active magnetic bearings
allow contract-free suspension of rotors and they are used
for various industrial purposes. We derive a mathemati-
cal model of the magnetic bearing which has complicated
rotor dynamics and nonlinear magnetic property. Then
we apply this proposed H∞ DIA control for the magnetic
bearing, and design a robust H∞ controller both for ex-
ogenous disturbances and for initial state uncertainties
of the plant. Experimental results show that the pro-
posed robust control approach is effective for improving
transient response and robust performance.

INTRODUCTION

H∞ control problem has proven to be an effective robust
control methodology and applied to a variety of industrial
products. On the other hand, recent precision control in-
dustries and manufacturing technologies require not only
robust stability of the control systems but also transient
performance for reference signals. One of the major ap-
proach for this problem is a two-degree of freedom ro-
bust control. But this approach generally has a coupling
problem of feedforward and feedback control design. An
H2/H∞ control approach[1] seems to be effective, but it
is not easy to design such controller for MIMO complex
systems.

A mixed Disturbance and an Initial-state uncertainty
Attenuation (DIA) control is expected to provide a good
transient characteristic as compared with conventional
H∞ control[2, 3]. Recently, hybrid/switching control are
actively studied, this method might be one of the most
reasonable approach to implement them. In this paper,
we apply the proposed H∞ DIA control to the magnetic

bearing, and design a robust H∞ controller both for ex-
ogenous disturbances and for initial state uncertainties
of the plant. Active magnetic bearings are used to sup-
port and maneuver a levitated object, often rotating, via
magnetic forces[4, 5]. Because magnetic bearings support
rotors without physical contact, they have many advan-
tages, e.g. frictionless operation, less frictional wear, low
vibration, quietness, high rotational speed, usefulness in
special environments, and low maintenance.

The outline of this paper is as follows: First we de-
rive a mathematical model of magnetic bearing systems
considering rotor dynamics and nonlinearities of mag-
netic force. Then we set the generalized plant which
contains design parameter for uncertainty and control
performance. Experimental results show that the pro-
posed robust control approach is effective for a mixed
disturbance and an initial-state uncertainty attenuation
and for improving transient response and robust perfor-
mance.

H∞ DIA CONTROL

Consider the linear time-invariant system which is de-
fined on the time interval [0,∞).

ẋ = Ax+B1w +B2u, x (0) = x0

z = C1x+D12u
y = C2x+D21w (1)

where x ∈ Rn is the state and x0 = x(0) is the initial
state; u ∈ Rr is the control input; y ∈ Rm is the observed
output; z ∈ Rq is the controlled output; w ∈ Rp is the
disturbance. The disturbance w(t) is a square integrable
function defined on [0,∞). A, B1, B2, C1, C2, D12 and
D21 are constant matrices of appropriate dimensions.
For system (1), every admissible control u(t) is given by
linear time-invariant system of the form

u = Jζ +Ky
ζ̇ = Gζ +Hy, ζ (0) = 0 (2)

which makes the closed-loop system given internally sta-
ble, where ζ(t) is the state of the controller of a finite

Ninth International Symposium on Magnetic Bearings, August 3-6, 2004, Lexington, Kentucky, USA HOME



dimension; J , K, G and H are constant matrices of ap-
propriate dimensions. For the system and the class of
admissible controls described above, consider a mixed-
attenuation problem state as below.

Problem 1 H∞ DIA control problem
Find an admissible control attenuating disturbances and
initial state uncertainties in the way that, for given N >
0, z satisfies

‖z‖2

2 < ‖w‖2

2 + xT
0 N

−1x0 (3)

for all w ∈ L2[0,∞) and all x0 ∈ Rn, s.t., (w, x0) 6= 0.

Such an admissible control is called the Disturbance and
Initial state uncertainty Attenuation (DIA) control.

In order to solve the H∞ DIA control problem, we
require the so-called Riccati equation conditions:

(A1) There exists a M > 0 to the Riccati equation
M(A−B2(D

T
12D12)

−1DT
12C1)

+(A−B2(D
T
12D12)

−1DT
12C1)

TM
−M(B2(D

T
12D12)

−1BT
2 −B1B

T
1 )M

+CT
1 C1 − CT

1 D12(D
T
12D12)

−1DT
12C1 = 0 (4)

such thatA−B2(D
T
12D12)

−1DT
12C1−B2(D

T
12D12)

−1BT
2 M+

B1B
T
1 M is stable.

(A2) There exists a P > 0 to the Riccati equation

(A−B1D
T
21(D21D

T
21)

−1C2)P
+P (A−B1D

T
21(D21D

T
21)

−1C2)
T

−P (CT
2 (D21D

T
21)

−1C2 − CT
1 C1)P

+B1B
T
1 −B1D

T
21(D21D

T
21)

−1D21B
T
1 = 0 (5)

such thatA−B1D
T
21(D21D

T
21)

−1C2−PC
T
2 (D21D

T
21)

−1C2+
PCT

1 C1 is stable.

(A3) ρ (PM) < 1
where ρ (X) denotes the spectral radius of matrix X,
ρ (X) = max |λi (X) |.

Then we can obtain the following result.

Theorem 1 [2]
Suppose that the conditions (A1), (A2) and (A3) are sat-
isfied, then the central control is given by

u = −(DT
12D12)

−1(BT
2 M +DT

12C1)(I − PM)−1ζ
ζ̇ = Aζ +B2u+ PCT

1 (C1ζ +D12u)
+(PCT

2 +B1D
T
21)(D21D

T
21)

−1(y − C2ζ)
ζ (0) = 0 (6)

The central control (6) is the H∞ DIA control if and only
if the condition (A4) is satisfied.

(A4) Q+N−1 − P−1 > 0,

where Q is the maximal solution of the Riccati equation

Q(A−B1D
T
21(D21D

T
21)

−1C2

+ (B1B
T
1 −B1D

T
21(D21D

T
21)

−1D21B
T
1 )P−1)

+(A−B1D
T
21(D21D

T
21)

−1C2

+ (B1B
T
1 −B1D

T
21(D21D

T
21)

−1D21B
T
1 )P−1)TQ

−Q(BT
1 −DT

21(D21D
T
21)

−1(C2P +D21B
T
1 )L)T

× (BT
1 −DT

21(D21D
T
21)

−1(C2P +D21B
T
1 )L)Q

= 0 (7)

with L := (I − PM)−1.

SYSTEM DESCRIPTION AND MODELING

The experimental setup of the magnetic suspension sys-
tem [8] is shown in FIG.1 and rotor coordinate is defined
in FIG.2. The controlled plant is a 4-axis controlled type
active magnetic bearing with symmetrical structure. The
axial motion is not controlled actively. The electromag-
nets are located in the horizontal and the vertical direc-
tion of both sides of the rotor. Moreover, hall-device-type
gap sensors are located in the both sides of the vertical
and horizontal direction. The model parameter of the
control plant is given in TABLE 1.

l1

r1

l3

r3

gap sensor

gap sensor

rotor

magnetic bearing

magnetic bearing

FIGURE 1: Active Magnetic Bearing

X

Y

Z

ψ

θ

φ

FIGURE 2: Rotor

In order to derive a nominal model of the system, the
following assumptions are introduced[5].

• The rotor is rigid and has no unbalance.

• All electromagnets are identical.

• Attractive force of an electromagnet is in propor-
tion to (electric current / gap length)2.

• The resistance and the inductance of the electro-
magnet coil are constant and independent of the
gap length.

• Small deviations from the equilibrium point are
treated.

These assumptions are not strong and suitable around
the steady state operation, but if the rotor spins at super-
high speed, these assumption will be failed. Based on the
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TABLE 1: MODEL PARAMETER

Parameter Symbol Value Unit

Mass of the Rotor m 0.248 kg
Length of the Rotor LR 0.269 m
Distance between

Center of Mass and lm 0.1105 m
each Electromagnet
Moment of Inertia Jx 5.05 · 10−6 kgm2

about X
Moment of Inertia Jy 1.59 · 10−3 kgm2

about Y
Steady Gap G 0.4 × 10−3 m

Coefficients of fj(t) k 2.8 × 10−7

Steady Current Il1, Ir1 0.1425 A
Il3, Ir3 0 A

Resistance R 4 Ω
Inductance L 8.8 × 10−4 H

Steady Voltage El1, Er1 0.57 V
El3, Er3 0 V

above assumptions, the equation of the motion of the ro-
tor in Y and Z directions in FIG.2 has been derived as
follows[5].

mÿs = −fl3 − vml3 − fr3 − vmr3 (8)

mz̈s = mg − fl1 − vml1 − fr1 − vmr1 (9)

Jy θ̈ = −Jxpψ̇ + lm(fl1 + vml1 − fr1 − vmr1) (10)

Jyψ̈ = −Jxpθ̇ + lm(−fl3 − vml3 + fr3 + vmr3)

(11)

where ys(t) and zs(t) are displacements of Y direction
and Z direction respectively; θ(t) and ψ(t) are angles
about Y direction and Z direction respectively; m is mass
of the rotor; g is gravity; lm is distance between center
and electromagnet; Jx and Jy are Moments of Inertia
about X axis and Y axis respectively; p is rotation rate
of the rotor; fjs are electromagnetic force; and vmjs are
exogenous disturbance. Here the subscript ’j’ shows the
each four directions:{l1, r1, l3, r3} in FIG.1.

The position variables ys and zs and the rotational
variables θ and ψ can be transformed by using gap lengths:
{gl1, gr1, gl3, gr3} which are small deviations from the
equilibrium point as follows.

ys = −(gl3 + gr3)/2 (12)

zs = −(gl1 + gr1)/2 (13)

θ = (gl1 − gr1)/2lm (14)

ψ = (−gl3 + gr3)/2lm (15)

Attractive force of electromagnets is given by assump-
tions.

fj = k
(ij + 0.5)2

(gj − 0.0004)2
− k

(ij − 0.5)2

(gj + 0.0004)2
(16)

Next we linearize the electromagnetic force (16) around
the operating point by the Taylor series expansions as

fj = k
(Ij + 0.5)2 − (Ij − 0.5)2

1.6 × 10−7

+Kxjgj +Kijij (17)

Kxj = −2k

„

(Ij + 0.5)2

(−4 × 10−4)3
+

(Ij − 0.5)2

(4 × 10−4)3

«

Kij = 2k

„

(Ij + 0.5)

(−4 × 10−4)2
−

(Ij − 0.5)

(4 × 10−4)2

«

.

The electric circuit equations are given as followed.

L
dij(t)

dt
+R(Ij + ij(t)) = Ej + ej(t) + vLj(t) (18)

where ij(t) is a deviation form steady current; ej(t) is a
deviation form steady voltage; vLj is noise.

The sensors provide the information for the gap lengths
gj(t). Hence the measurement equations can be written
as

yj(t) = gj(t) + wj (19)

where wj(t) represents the sensor noise as well as the
model uncertainties.

Thus, summing up the above results (12)-(19), the state-
space equations for the system are

»

ẋv

ẋh

–

=

»

Av pAvh

−pAvh Ah

– »

xv

xh

–

+

»

Bv 0
0 Bh

– »

uv

uh

–

+

»

Dv 0
0 Dh

– »

vv

vh

–

»

yv

yh

–

=

»

Cv 0
0 Ch

– »

xv

xh

–

+

»

wv

wh

–

(20)

xv = [gl1 gr1 ġl1 ġr1 il1 ir1]
T

xh = [gl3 gr3 ġl3 ġr3 il3 ir3]
T

uv = [el1 er1]
T , uh = [el3 er3]

T

vv = [vml1 vmr1 vLl1 vLr1]
T

vh = [vml3 vmr3 vLl3 vLr3]
T

yv = [yl1 yr1]
T , yh = [yl3 yr3]

T

wv = [wl1 wr1]
T , wh = [wl3 wr3]

T

Av :=

2

4

0 I2 0
Kx1A1 0 Ki1A1

0 0 −(R/L)I2

3

5

Ah :=

2

4

0 I2 0
Kx3A1 0 Ki3A1

0 0 −(R/L)I2

3

5

Avh :=

2

4

0 0 0
0 A2 0
0 0 0

3

5

A1 :=

»

1/m+ l2m/Jy 1/m− l2m/Jy

1/m− l2m/Jy 1/m+ l2m/Jy

–

A2 :=

»

Jx/2Jy −Jx/2Jy

−Jx/2Jy Jx/2Jy

–
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Bv = Bh :=

2

4

0
0

(1/L)I2

3

5

Cv = Ch :=
ˆ

I2 0 0
˜

Dv = Dh :=

2

4

0 0
A1 0
0 (1/L)I2

3

5

where I2 ∈ R2×2 is unit matrix, and Kx1 = Kxl1 = Kxr1,
Kx3 = Kxl3 = Kxr3, Ki1 = Kil1 = Kir1, Ki3 = Kil3 =
Kir3 in (16), and p is the rotor speed. Here p is equal to
0 and we do not consider a rotation of the rotor in this
paper.

The equation (20) can is also expressed simply as

ẋg = Agxg +Bgug +Dgv0

yg = Cgxg + w0 (21)

where xg := [xT
v xT

h ]T , ug := [uT
v uT

h ]T , v0 :=
ˆ

vT
v vT

h

˜T
,

w0 =
ˆ

wT
v wT

h

˜T
and Ag, Bg, Cg, Dg are constant ma-

trices of appropriate dimensions.

CONTROL SYSTEM DESIGN

In this section, we design an H∞ DIA controller for the
magnetic bearing system based on the derived state-space
formula.

Let us construct a generalized plant for the magnetic
bearing control system. First, consider the system dis-
turbance v0. Since v0 mainly acts on the plant in a low
frequency range in practice, it is helpful to introduce a
frequency weighting factor. Hence let v0 be of the form

v0 = Wv(s)w2 (22)

Wv(s) =

2

6

6

4

I2 0
I2 0
0 I2
0 I2

3

7

7

5

Wv0(s)

Wv0(s) = Cv0 (sI4 −Av0)
−1Bv0

where Wv(s) is a frequency weighting whose gain is rel-
atively large in a low frequency range, and w2 is a (1, 2)
element of w . These values, as yet unspecified, can be
regarded as free design parameters.

Consider the system disturbance w0 for the output.
The disturbance w0 shows an uncertain influence caused
via unmodeled dynamics, and define

w0 = Ww(s)w1 (23)

Ww(s) = I4Ww0(s)

Ww0(s) = Cw0 (sI4 −Aw0)
−1Bw0

where Ww(s) is a frequency weighting function and w1

is a (1, 1) element of w. Note that I4 is unit matrix in
R4×4.

The frequency functions Wv and Ww in (22) and (23)
are rewritten as equations in (24) and (25).

ẋv = Avxv +Bvw2

v0 = Cvxv +Dvw2 (24)

ẋw = Awxw +Bww1

w0 = Cwxw +Dww1 (25)

where the state xv and xw are defined as

xv :=
h

xT
v1 x

T
v2 x

T
v3 x

T
v4

iT

xw :=
h

xT
w1 x

T
w2 x

T
w3 x

T
w4

iT

.

Next we consider the variables which we want to reg-
ulate. In this case, since our main concern is in the sta-
bilization of the rotor, the gap and the corresponding
velocity are chosen; i.e.,

zg = Fgxg, (26)

Fg =

2

6

6

4

I2 0 0 0 0 0
0 I2 0 0 0 0
0 0 0 I2 0 0
0 0 0 0 I2 0

3

7

7

5

z1 = Θzg, Θ = diag
ˆ

θ1 θ2 θ1 θ2
˜

(27)

where Θ is a weighting matrix on the regulated variables
zg, and z1 is a (1, 1) element of z. This value Θ, as yet
unspecified, are also free design parameters.

Furthermore the control input ug should be also reg-
ulated, and we define

z2 = ρug (28)

where ρ is a weighting scalar, and z2 is a (1, 2) ele-

ment of z. Finally, let x :=
ˆ

xT
g xT

v xT
w

˜T
, where

xv denotes the state of the function Wv(s), xw denotes

the state of the function Ww(s), and w :=
ˆ

wT
1 wT

2

˜T
,

z :=
ˆ

zT
1 zT

2

˜T
, then we can construct the generalized

plant as follows.

ẋ = Ax+B1w +B2u
z = C1x+D12u
y = C2x+D21w (29)

Since the disturbances w represent the various model un-
certainties, the effects of these disturbances on the error
vector z should be reduced.

Next our control problem setup is defined as;
Control problemF Find an admissible controller K(s)
that attenuates disturbances and initial state uncertain-
ties to achieve the H∞ DIA condition in (3) for general-
ized plant (29).

After some iteration in MATLAB environment, de-
sign parameters are chosen as follows;

Wv0(s) =
40000

s+ 0.1

Ww0(s) =
1.1s3 + 1.4 · 104s2 + 7.3 · 107s+ 3.5 · 1011

0.2s3 + 1.1 · 104s2 + 5.1 · 106s+ 2.7 · 1011

Θ = diag
ˆ

θv1 θv2 θh1 θh2

˜

θv1 = diag
ˆ

0.4 0.4
˜

,

θh1 = diag
ˆ

0.5 0.5
˜

θv2 = θh2 = diag
ˆ

0.0005 0.0005
˜

ρ = 8.0 · 10−7I4

Direct calculations yield the 24-order H∞ DIA cen-
tral controller KDIA and its frequency response is shown
in FIG.3.

The maximum value of the weighting matrix N in the
H∞ DIA condition (3) is given by

N = 3.3176 · 10−6 · I24. (30)
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EVALUATION BY EXPERIMENTS

We conducted control experiments to evaluate properties
of the designed H∞ DIA controller compared with an
integral-type Optimal State Feedback Control with the
minimal order observer and a notch filter. We define this
controller as “LQ Controller”.

The notch filter has a notch at 2000[Hz] and its trans-
fer function is as follows.

s2 + 1.5791 × 108

s2 + 12566s+ 1.5791 × 108
(31)

The objective of this experimental comparison is to
evaluate control performance for transient property, ro-
bust performance and initial response for uncertain initial
state. The experimental results are shown in FIGs. 4-9.

1) Step Responses

Step responses for a reference signal are shown in FIG.4
and FIG.7, where the step size is 0.05[mm] and the steady-
state gap is 0.4[mm]. Compared with H∞ DIA control,
LQ control shows a quick response without any overshoot
because LQ control utilizes full state information.

2) Disturbance Responses

Disturbance responses for a step-type disturbance signal
with/without model parameter perturbation are shown
in FIG.5 and FIG.8. A 60[g] weight is attached to the
center of the rotor as a model perturbation and a step-
type force disturbance is added to −l1 and −r1 directions
in FIG.1, where the magnitude of the disturbance is 1/6
steady-state vertical attractive force.

H∞ DIA controller shows good disturbance responses
and also good robust performance for step-type distur-
bance and model perturbation.

3) Initial Responses

In FIGs.6 and 9, initial responses of two controllers are
shown respectively. The initial state is chosen that the

rotor is touched down. Four gap lengths are shown in
these figures and the H∞ DIA controller shows better
initial performance.

Finally, compared with LQ control, we can see that
H∞ DIA control has a good robust performance and
transient response except for nominal step response from
FIGs.4-9.

CONCLUSION

This paper dealt with an application of H∞ control atten-
uating initial-state uncertainties to the magnetic bearing
and examined the H∞ DIA control problem.

First we derived a mathematical model of magnetic
bearing systems considering rotor dynamics and nonlin-
earities of magnetic force. Then we set the generalized
plant which contains design parameter for uncertainty
and control performance.

Finally, several experimental results of step responses
and disturbance responses with model perturbation and
initial responses showed that the proposed H∞ DIA ro-
bust control approach is effective for a mixed disturbance
and an initial-state uncertainty attenuation and for im-
proving transient response and robust performance.

Future work is an evaluation of the proposed H∞ DIA
control via rotational experiments.

REFERENCES

[1] T. Sugie and Y. Tanai, “H2/H∞ Suboptimal Con-
troller Design of Magnetic Levitation Systems(in
Japanese),” Trans. SICE, vol. 30, no. 10, pp. 1202 -
1208, 1994.

[2] T. Namerikawa, M. Fujita, R.S. Smith and K.
Uchida, “On the H∞ Control System Design Atten-
uating Initial State Uncertainties,” Trans. of SICE,
vol.40, no.3. pp.307-314, 2004.

[3] T. Namerikawa and M. Fujita, “H∞ Control System
Design of the Magnetic Suspension System Consid-
ering Initial State Uncertainties,” IEEJ Trans. EIS,
vol.123, no.6, pp.1094-1100, 2003.

[4] G. R. Duan and D. Howe, “Robust Magnetic Bear-
ing Control via Eigenstructure Assignment Dynam-
ical Compensation,” IEEE Trans. on CST, vol. 11,
no. 2, pp. 204-215, 2003.

[5] F. Matsumura, T. Namerikawa, K. Hagiwara and M.
Fujita, “Application of Gain Scheduled H∞ Robust
Controllers to a Magnetic Bearing,” IEEE Trans. on
CST, vol. 4, no. 5, pp. 484-493, 1996.

[6] J. H. Lee, P. E. Allaire, G. Tao, J. A. Decker and
X. Zhang, “Experimental study of sliding mode con-
trol for a benchmark magnetic bearing system and
artificial heart pump suspension,” IEEE Trans. on
CST, vol. 11, no. 1, pp. 128-138, 2003.

[7] K. Nonami and T. Ito, “µ Synthesis of Flexible
Rotor-Magnetic Bearing Systems,” IEEE Trans. on
CST, vol. 4, no. 5, pp. 503-512, 1996.

[8] Magnetic Moments, LLC, MBC 500 Magnetic Bear-
ing System Operation Instructions, 2002.

Ninth International Symposium on Magnetic Bearings, August 3-6, 2004, Lexington, Kentucky, USA



-0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-5

0

5

10

15

20
x 10

-5

g
l
3
,
 
g
r
3
 
[
m
]

TIME [s]

gl3
gr3

FIGURE 4: Step Response of H∞ DIA Controller

0 0.2 0.4 0.6 0.8 1
-10

-5

0

5
x 10

-5

g
l
1
 
[
m
]

Nominal

with weight

FIGURE 5: Disturbance Response of H∞ DIA Con-
troller with/without perturbation

-0.1 0 0.1 0.2 0.3 0.4 0.5
-2

-1

0

1

2

3

4
x 10

-4

g
l
1
,
 
g
r
1
,
 
g
l
3
,
 
g
r
3
 
[
m
]

TIME [s]

gl1
gr1
gl3
gr3
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