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ABSTRACT
In developing engineering models for rotating machine
analysis, most of the components of the rotor–bearing–
foundation system can be modelled relatively accurately.
However, there are always some parts or interactions
which are very hard to model, such as shrink fits or foun-
dation components. Such parts or effects can be referred
to as unmodelled dynamics.

This paper presents a non-parametric method to iden-
tify the unmodelled dynamics using the combination
of an engineering model and experimental data. As-
suming that errors in the engineering model and mea-
surement noises are bounded, a bound is derived for
the uncertainties in the identified dynamics by using
µ-analysis. An illustrative example is given, and two
widely used non-linear searching methods are compared
to the µ−analysis in estimating the bound, showing that
the µ approach is the only efficient method to find a tight
hard bound.

INTRODUCTION
Finite element models are widely used in rotordynam-
ics analysis, and for a rotor-bearing system, most com-
ponents can be modelled accurately. There are, how-
ever, some components such as shrink fits and foundation
which may be hard to model due to a number of practi-
cal difficulties. Further, these parts or interconnections
are often very hard to identify experimentally, because
they cannot be measured directly: their tight integration
in the overall system precludes direct access to their in-
put/output. Therefore, they must be identified, if possi-
ble, together with the whole system.

There are two general approaches to model refinement
or updating. The first approach assumes that the structure
of the nominal engineering model is correct and seeks
to modify specific parameters of the model to make the
model I/O match the measured I/O. A good overview of
this approach is provided by Friswel and Mottershead
[1]. These methods assume there are errors in certain
model parameters, such as stiffness or mass, and by com-

paring to the test data, these parameters can be adjusted.
Usually these methods only improve the existing param-
eters of the engineering model, and the parameters usu-
ally cannot be frequency dependent. Therefore most of
these methods may not be directly suitable for identify-
ing unmodelled dynamics.

Recently, some researchers have begun to focus on fre-
quency dependent problems, for instance, Sinha et al [4],
who modelled the foundation from a single run-down of
a machine. They assumed the foundation parameters are
frequency dependent, then divided the frequency range
into many bands, and applied model updating methods
to each of them.

The second approach (Maslen et al [2]) assumes that
the engineering model parameters are correct but that the
model is completely missing certain dynamic elements
whose model is completely unknown. All that is known
about these missing elements is the manner in which they
interact with the system described by the engineering
model. The goal of model refinement here is to identify
the simplest dynamic model of these missing elements
that will cause the measurable dynamics of the resulting
composite model to match those measured for the actual
system.

These two approaches usually do not use the test data
directly. They use a model of the data identified by
black–box/system identification instead. The process can
be represented by the diagram shown in Figure 1, where
Box A and B forms a route to identify the unmodelled
dynamics from the test data. Box A is the black-box
type system identification, which identifies a model from
test data. The test data can be both in time or frequency
domain for system identification, but in this paper, only
frequency response functions (FRFs) are used. Box B
represents the model updating approaches, which use the
identified model and the engineering model to improve
certain parameters or identify the unmodelled dynamics.

This paper presents another route to identify the un-
modelled dynamics from the test data, as indicated by
the lower part of Figure 1. This route includes two boxes,
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Figure 1: Identification diagram

Box C and also Box A, and Box C is the focus of this pa-
per. In Box C, the non-parametric identification (NonP
Id) requires FRF 1 and FRF 2, and generates FRF 3. FRF
1 is the test data in essentially raw (frequency response
function) form. FRF 2 can be the either test data from the
rest of the structure or generated from the engineering
model, which will be explained later. FRF 3 is the FRF
of the unmodelled dynamics. Notice that both routes use
Box A, but in different positions. One advantage of the
lower route is that, without begin tangled with the whole
system, FRF 3 should be easier to identify. Another ad-
vantage is that it is possible to estimate the model quality
of the unmodelled dynamics, and this is central to the
objectives of this paper.

In the upper route, since the model updating ap-
proaches include the engineering model in the identifi-
cation, the identified unmodelled dynamics may depend
heavily on the quality of the engineering model, but very
little literature has discussed how to estimate the influ-
ence of the errors of the engineering model, nor the in-
fluence of noise in the test data — the identified model is
simply regarded as “true”. Consequently, the uncertainty
in the corrected model is only based on inability to fully
match the data: the influence of model error on matching
error is ignore. This generally produces a gross underes-
timate of uncertainty in the model corrections. Without
a reliable bound on the uncertainty of the model correc-
tions, it is essentially impossible to assess the accuracy
of I/O projections other than those already measured: ex-
trapolation from the data can’t be done with any quantifi-
able uncertainty bounds. Hence, the corrected model is
of very limited utility. We seek here to obtain a reliable
bound on uncertainty of the model correction in order
to ensure a reliable bound on model based extrapolative
performance/response predictions.

Attention to this problem is increasing, particularly
in the controls community. Some system identification
methods have been presented that not only provide mod-
els but also provide bounds on the accuracy of those
models ([3] and [5]), but all those methods require that
the test data are bounded. This paper presents a method
to bound FRF 3, so that those methods may be applied in
deriving the model and the bounds.

CALCULATION OF THE UNMODELLED DY-
NAMICS
For the analysis of rotating machinery, it is most common
to present a model in discrete (finite dimensional) form.
The usual form of the model is:

M0ẍ + C0ẋ + K0 = f (1)

where M0, C0 and K0 are the mass, damping and stiff-
ness matrices and f represents external loads or other
effects such as mass unbalance. The Laplace transfor-
mation of the above equations is:

Z0x = F (2)

where Z0 = s2M0 + sC0 + K0 is the dynamics stiffness
matrix. The dimension of Z0 is related to the number of
lumped mass stations along the shaft. Each element in
Z0 corresponds to certain location on the shaft in certain
coordinate, while each location on the shaft may corre-
spond to several elements in Z0. To select specific lo-
cations on the shaft, two location matrices [Ta]n×a and
[Tb]n×b can be introduced. The elements in Z0 corre-
sponding to these locations are Ea×b = T T

a Z0Tb. Con-
versely, if some additional dynamic system, Ê, is con-
nected to these locations, Z0 can be simply corrected as
Z1 = Z0 + TaÊT T

b .
Consider the FRF data of an experiment: only several

locations are excited and/or sampled. Let Te and Ts be
the input and output location matrices so that the I/O re-
lation is:

Z0x = TeFe (3)

z = T T
s x (4)

or simply z = T T
s Z−1

0 TeFe, where Fe are the excitation
forces. Assume that the unmodelled dynamics, denoted
as Du(s), occur at locations Tu so that the true transfer
function from Fe to z becomes

P1 = T T
s (Z0(s) + Tu(−Du(s))T T

u )−1Te (5)

By using the matrix inversion formula [6], (5) can be
rewritten as

P1(s) = G11 + G12(I − Du(s)G22)−1Du(s)G21 (6)

where

G11(s) = T T
s Z−1

0 Te

G12(s) = T T
s Z−1

0 Tu

G21(s) = T T
u Z−1

0 Te

G22(s) = T T
u Z−1

0 Tu

Du(s) can be calculated from (6) as

Du(s) = −(G21(G11 − P1)−1G12 − G22)−1 (7)
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Figure 2: Analysis Framework

If G12 and G21 are square and full rank, i.e. there are
as many excitations and sensors as there are connections
to the unmodelled dynamics, the required inverses will
exist; otherwise, the direct inversion will not be possi-
ble. Due to signal noise in real data, the inversion is
often possible despite this, but the resulting predictions
will be extremely noisy with uncertainties that cannot be
bounded.

µ-ANALYSIS
µ-analysis is a powerful tool in robust control, and this
paper is a mechanical engineering application of this
tool. µ-analysis will be only introduced briefly in this
section: see [6] for a more complete description of the
method.

Figure 2 shows the general framework of µ-analysis,
where

z = Fu(M, ∆)w (8)

M is a complex matrix partitioned as

M =
[

M11 M12

M21 M22

]
(9)

∆ is defined as

∆ = diag[δ1Ir1, ..., δsIrs, ∆1, ..., ∆F ] (10)

where Ir,i are identity matrices, and δi / ∆i are unknown
but bounded complex numbers/matrices. F(M, ∆) is
an upper link linear fractional transformation (LFT), de-
fined as

Fu(M, ∆) = M22 + M21∆(I − M11∆)−1M12 (11)

Most model uncertainty can be represented in this
form. Consider a simple situation that Fu(M, ∆) is 1-
by-1, i.e. a complex number, and M is a constant com-
plex matrix. Because ∆ is uncertain, Fu(M, ∆) is a
cloud (ball) of possible complex numbers. µ-analysis
finds a bound for the size of this cloud. Let

γt = max
∆

|Fu(M, ∆)|

then γt is the true/tightest bound of this cloud measured
from the origin. To find γt is the same as to find the
global minimum of a non-linear function, which is a
very hard problem. µ-analysis derives an over-bound
γo, an under-bound γu, and a worst-case ∆w (a constant

o

c •
•

R

I

Figure 3: The uncertainty cloud and the bounds

complex matrix within the uncertainty range), such that
γu ≤ γt ≤ γo and γu = |Fu(M, ∆w)|. Notice that
Fu(M, ∆w) is a actual point on the edge of the cloud,
and γu is achievable.

This over– under–bound strategy avoids directly
searching for the global minimum, and the searching can
be finished in polynomial time. Further, the two bounds
are very close for most systems [6] so the pair of bounds
is useful. γo can be used as the bound, and γu can be
used to calculate a boundary tightness indication (BTI)
to show how conservative γo is:

BTI ≡ γu/γo (12)

The closer BTI is to 1, the closer γo is to γt.
γt can be seen as the furthest distance between the ori-

gin and all points in the cloud. Due to the shape of the
cloud, γt may not be the best way to describe the cloud,
which can be illustrated by Figure 3. The radius is γt and
the solid-line ellipsoid represents the cloud. Another way
to describe the cloud is to give the center c and the two
principle components of the rectangular box. This can
be done by moving the origin several times to get several
points on the edge of the cloud. Usually the rectangular
box is smaller than the circle.

CALCULATION OF THE BOUND
There are several kinds of uncertainty present in the en-
gineering model and test data, such as errors in the engi-
neering model introduced in the process of the discretiza-
tion and measurement noises of the sensors. Therefore
all the transfer functions at the right side of Equation 7
have uncertainties. This section will transform these un-
certainties and the transfer functions in Equation 7 into
the form introduced in last section, and then apply µ-
analysis to derive the bound.

The first step is to add uncertainties to both sides of
Equation 7. Let D̂u be the unmodelled dynamics with
uncertainty, then ∆d = Du − D̂u is the uncertainty, and
it can be derived trivially from (7) as:

∆d = Du + Ĝ−1
12 (Ĝ11 − P̂1)×

×(I − Ĝ−1
21 Ĝ22Ĝ

−1
12 (Ĝ11 − P̂1))−1Ĝ−1

21 (13)
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Figure 4: System diagram 1

in which the hatted symbols are uncertain. The objec-
tive is to bound ∆d. The system diagram is shown in
Figure 4.

The next step is to build uncertainty bounds for each
transfer function shown in Figure 4. For P1, an ensemble
of experiments can be conducted and the resulting scat-
ter in each data point can be assessed as an uncertainty
bound. For Gij , i, j = 1, 2, experiments are preferred if
possible, and the bounds can be built as for P1. Some-
times it is not possible to do the experiments without
the unmodelled dynamics components being involved,
like the foundation. In this case, the uncertainties of
M0, C0 and K0 should be estimated by engineers.Either
way, each transfer functions can be expressed as a known
transfer function with bounded uncertainty. Figure 5
shows the system diagram, where G̃ij , i, j = 1, 2 have
different expressions according to different approaches
to obtaining the bounds.

The third step is to pull individual uncertainty matrices
out and rearrange the model into the standard µ-analysis
form. The diagram is shown in Figure 6.

The last step is to use µ analysis to get the bound for
∆d. If ∆d is only a complex number, then the method
introduced in last section can be applied directly. Oth-
erwise, each element can be bounded separately. The
bound can be simply the radius of the circle, or a rectan-
gular box (the center and two principle components).

A SIMULATION EXAMPLE

The Engineering Model and Test Data

Figure 7 shows a simplified rotor-foundation system,
where Mr = 20 kg, Mf = 100 kg, Cb = 1000 Ns/m,
Cf = 100 Ns/m, Kb = 105 N/m and Kf = 106 N/m.
For the engineering model, Mf , Cf and Kf are not
known, and estimated values of Mg = 50 kg, Cg =
200 Ns/m and Kg = 3 × 106 N/m are used instead. The
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Figure 7: Simplified rotor-bearing-foundation system
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engineering model is:

M0 =
[

Mg 0
0 Mr

]

C0 =
[

Cg − Cb −Cb

−Cb Cb

]

K0 =
[

Kg − Kb −Kb

−Kb Kb

]
Tu =

[
1 0

]T

Te = Ts =
[

0 1
]T

with eigenfrequencies of 70.11 and 247.02 rad/s. The
true plant is:

M1 =
[

Mg 0
0 Mr

]
+ ∆m

C1 =
[

Cg − Cb −Cb

−Cb Cb

]
+ ∆c

K1 =
[

Kg − Kb −Kb

−Kb Kb

]
+ ∆k

where

∆m = 0.01
[

m11δ11 m12δ12

m21δ21 m22δ22

]

and |δij | ≤ 1,i, j = 1, 2 is a real uncertainty. ∆c and ∆k

are defined similarly and also represent 1% uncertainties.
The eigenfrequencies of the real system are 69.61 and
102.13 rad/s.

The FRF data are generated as:

P1(s) = T T
s (s2M1 + sC0 + K1)−1Te(1 + 0.02δp)

where |δp| < 1 is a complex uncertainty, and s =
jω, ω ∈ [0.2π, 40π].

Non-linear Minimization (NM) and Random Search
(RS)
Non-linear minimization (NM) and random search (RS)
are widely use for non-linear problems. They are com-
pared to µ-analysis (MU) in this example.

In Random Search (RS), the unmodelled dynamics to-
gether with the uncertainty can be expressed as a non-
linear function of the model, FRF data and their uncer-
tainties:

D̂u(s) = f(∆, Z0, P1) (14)

For each frequency point, by randomly assign ∆ certain
values within the range, a set of D̂u can be calculated.
The edge of the set can be picked out as the bound. The
bigger the size of the set, the closer the bound is to the
true one.
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Figure 8: Uncertainty bound

In Nonlinear minimization (NM), the ∆ in Equa-
tion 14 can be regarded as variables with constraints.
This kind of problem can be solved using any of several
well developed non-linear minimization tools. A rectan-
gular box for the uncertainties can be obtained similar to
that obtained through µ-analysis. The initial value of ∆
has a strong influence on the result.

The Results
For RS, 10000 D̂u were calculated for each frequency
point. For NM, the initial value of ∆0 = 0 was used. Fig-
ure 8 shows the calculated |Du|, the true |Du|, max |D̂u|
and min |D̂u|. This figure gives only a big picture that
Du is contained in all the bounds and the MU bounds
contain everything. The bound is rather big for some fre-
quencies considering only 2% uncertainties added, e.g.,
the lower bound at ω = 5 rad/s almost reaches 0 and the
upper bound is about 2.4 × 106 N/m.

To compare the three methods clearly, normalized up-
per bounds (max |D̂u| − |Du|)s are shown in Figure 9,
where the MU upper bound is 1. The average value, min-
imum value and calculation time are shown in Table 1.
The BTI shows that MU is very close to the true bound.
NM is closer to MU on average than RS, but there is a
sharp peak at ω = 55 rad/s. This problem can be solved
by using different ∆0s, but the calculation time will be
accordingly longer. For instance, if 20 randomly chosen
∆0 are used, then the minimum value becomes 0.838,
the average value is 0.929, and the calculation time is
385 seconds. The minimum value is much better, but the
average value shows very little improvement.

Figure 10 shows the complex plane at a randomly
picked frequency ω = 37.25 rad/s, where the rectangu-
lar boxes of MU and NM are shown, and the RS set of
D̂u are used directly as the cloud inside the boxes. The
star on the right side of the inner MU bound is an achiev-
able point. The MU boxes contain the cloud but not the
whole NM box, because the simple shape of a rectangu-
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Figure 9: Normalized uncertainty upper bounds

Method Time (s) Average Value Min Value
MU 218 1 1
BTI NA 0.996 0.992
NM 18.5 0.924 0.371
RS 434 0.806 0.667

Table 1: Upper Bound Comparison

lar box brings in non-achievable points, which can also
be seen from Figure 3. This figure shows that, even if
10000 iterations are used in RS, the edge of the cloud
is still far from the achievable point. More importantly,
without MU, it is hard to know how close it is.

DISCUSSION AND CONCLUSION
This paper presents a non-parametric method to iden-
tify unmodelled dynamics along with a very tight bound
on the uncertainty of the extracted model. The calcula-
tion of the unmodelled dynamics is simple and straight-
forward, given experimental data (and the engineering
model). Since there are various uncertainties in the en-
gineering model and test data, the quality of calculated
unmodelled dynamics are estimated. Two general meth-
ods are compared in searching for the bound in the ex-
ample. These two methods usually cannot find the exact
bound in limited time if there are certain number of un-
certainties, such as 10. For LFT form uncertainties, the
µ-analysis can derive a narrow interval containing the ex-
act bound, and the example shows how narrow the inter-
val typically is.

Although the MU bound is very close the the “tightest”
bound, there are at least three problems which may make
the “tightest” bound conservative: a) The uncertainties
of the engineering model may have some interconnec-
tions, such as the density error could affect all parts of
M0. b) The uncertainties for each frequency points are
assumed to be independent, but actually they may not be.
c) When Du is not 1-by-1, each element is bounded sep-
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Figure 10: Uncertainty bounds for ω = 37.25 rad/s,
where – Outer bound of MU, - - Inner bound of MU,-
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arately, which can also bring in conservativeness. These
problems are not considered in this paper, but they need
to be kept in mind when MU (or any other uncertainty
estimation technique) is used.

The results — FRFs of Du and the bounds for each
frequency point — can be used directly, such as to derive
the system performance FRFs, or a parametric model can
be identified from them. A simple way to identify the
parametric model is to curve fit the FRFs and check if
the fitted result is inside the bounds. More sophisticated
identification methods can be found in the literature such
as [3] and [5].
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