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ABSTRACT
This study presents a control design approach

for a zero bias active magnetic bearing system.
A nonlinear control approach based on a control
current switching rule is studied experimentally
for an energy storage flywheel active magnetic
bearing(AMB) system. The equation of motion
for the rigid rotor-AMB system is transformed
to have a decentralized structure for the control
design. To compute nonlinear control currents,
a servo backstepping control is designed for each
axis of the AMB. The proposed approach is
experimentally verified using a high speed digital
signal processor(DSP).

INTRODUCTION
The use of active magnetic bearings in fly-

wheel energy storage systems is a promising re-
search field due to the significant advantages of
AMB’s such as contactless and frictionless very
high speed rotation [1]-[3]. Besides such great
advantages, in reality, the competitiveness of the
magnetic bearings to other mechanical bearings
in flywheel applications depends strongly on the
reduction in bearing losses. Conventional active
magnetic bearings use linearizing bias currents
with superposed control currents to obtain a lin-
ear characteristic of the magnetic actuator. The
bias currents become the main source of the bear-
ing losses. Zero-bias active magnetic bearings have
potential to realize reduction in bearing losses.

Nonlinear control of active magnetic bearings
has been previously studied using different control
approaches [4]-[5]. Zero-bias control of active
magnetic bearing have also been studied [6]-[8]. In
this study, as a continuation of the previous works,
an experimental approach is realized for a specific
flywheel AMB system. For this aim, a nonlinear
control structure is first defined for a single axis
magnetic bearing. Then, a flywheel (AMB)
test system is introduced and modeled with a
decentralization approach. Finally, experimen-

tal verification is realized and results are presented.

FORCE BASE SWITCHING
A single axis rotor-magnetic bearing system

depicted in Figure 1 is used to illustrate the pro-
posed control structure. The equation of motion
for the rotor-active magnetic bearing system shown
in Fig.1 is simply derived as

Mẍ = f̄ (1)

where M is the mass of the rotor and f̄ is the
electromagnetic force produced by a magnetic ac-
tuator. The actuator is composed of a pair of elec-
tromagnets; one is located at x > 0 and the other
at x < 0 side. Note that each electromagnet gen-
erates attractive force. The resulting force acting
on the rotor is given by

f̄ = f̄1 − f̄2

=
Kaī

2
1

(X0 − x)2
− Kaī

2
2

(X0 + x)2
(2)

where Ka and X0 denote the magnetic force co-
efficient and the air gap between rotor and mag-
net, respectively. Using the variable transforma-
tion x1 = x, x2 = ẋ, the second order control
system is obtained as

ẋ1 = x2

ẋ2 = b̄f̄
y = x1

(3)

where y denotes the measured output of the sys-
tem and b̄ = 1/M . In reality, each electromagnet
is driven by the control currents ī1 and ī2 to pro-
duce control forces f̄1 and f̄2. As is well known,
the aim of the control in a rotor magnetic bearing
system is to suspend the rotor in the center line
in presence of disturbances. To realize this objec-
tive a controller is necessary to generate the elec-
tromagnetic control forces for any rotor position.
Therefore when the control forces are known, the
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currents are derived from these forces. An impor-
tant property of the proposed control structure is
only one electromagnet in each axis of the active
magnetic bearing has a current flow at any given
time. A switching rule is necessary to realize the
proposed control structure. The control currents of
the electromagnets may be switched depending on
the rotor displacement. However, in displacement
base switching, positiveness of the square root in
control current equation is not guaranteed due to
dependence of control force to both displacement
and velocity. In this study, it is proposed to switch
the control currents according to the sign of the
control force f̄ such as

f̄ ≥ 0, f̄2 = 0, f̄1 = f̄ , ī1 = (X0 − x)

√
f̄1

Ka

f̄ < 0, f̄1 = 0, f̄2 = −f̄ , ī2 = (X0 + x)

√
f̄2

Ka

(4)
Note that the square root yields always a real num-
ber in the above computations.

x

z

f2 f1

FIGURE 1: A single axis rotor-magnetic bearing

MODELING OF FLYWHEEL-AMB
SYSTEM

Equations of Motion
The flywheel-AMB system depicted in Figure 2

shows the rotor and placement of the magnetic ac-
tuators in upper and lower locations in xGz plane.
Note that four other magnetic actuators are also
placed in yGz plane symmetrically, but are not
shown in the Figure 2. The equation of motion
of the rigid rotor-active magnetic bearing system
is derived as

Mẍg = (f1 − f3) + (f5 − f7)
Ir θ̈y = −(f1 − f3)Lu − (f5 − f7)Ll

Mÿg = (f2 − f4) + (f6 − f8)
Ir θ̈x = (f2 − f4)Lu + (f6 − f8)Ll

(5)

where xg and yg denote the displacement of the
rotor’s center of mass. Similarly, θy and θx are the
angular displacement of the rotor around the x and
y axes. f1, f2, f3, and f4 denote the electromag-
netic forces for the upper bearing in the x and y

directions. Similarly, f5, f6, f7, and f8 show the
electromagnetic forces for the lower bearing. The
upper and lower bearing forces in the x direction
are given as

f1 =
Kui

2
1

(X0 − xu)2
f3 =

Kui
2
3

(X0 + xu)2

f5 =
Kli

2
5

(X0 − xl)2
f7 =

Kli
2
7

(X0 + xl)2

(6)

The electromagnetic forces for the y direction have
the same form.

Decentralization of Upper and Lower
AMB

The equations of motion obtained in (5) are
derived according to the movement of the rotor’s
center of mass. On the other hand, the measured
signals are the displacements of the rotor at the
lower and upper sensor locations. Since sensor lo-
cations are distinct from the mass center, the com-
putation of the displacements of the rotor’s center
of mass and angular displacements are necessary
during control operation. Instead of computing the
displacements xg, yg, θy and θx, the computation
of the displacements of the rotor at the magnet lo-
cations makes the control system collocated. To
this aim, the equations of the rotor AMB system
may be transformed to the actuator locations. The
displacement at the upper AMB location for the x
direction is obtained as

xu = xg − Luθy (7)

Taking the double derivative of the above equation
and substituting Equations (5) and (6) into the
obtained derivations, the equations are derived as

ẍu = ẍg − Luθ̈y =
1
M
f1 − 1

M
f3

−Lu

(
− 1
Ir
f1Lu +

1
Ir
f3Lu

)

ẍu = au

[
Kui

2
1

(X0 − xu)2
− Kui

2
3

(X0 + xu)2

] (8)

where

au =
(

1
M

+
L2

u

Ir

)
(9)

The transformation of the equations for the loca-
tion of lower AMB is realized with the same deriva-
tion procedure and follows as

xl = xg − Llθy

ẍl = ẍg − Llθ̈y =
1
M
f5 − 1

M
f7

−Ll

(
− 1
Ir
f5Ll +

1
Ir
f7Ll

)

ẍl = al

[
Kli

2
5

(X0 − xl)2
− Kli

2
7

(X0 + xl)2

] (10)



where

al =
(

1
M

+
L2

l

Ir

)
(11)

Note that in the above derivation process only the
forces that directly effect the considered points are
taken into account. When the transformation is
done for the upper actuator location (xu, yu) on
the rotor, the upper AMB forces f1 and f3 are
considered and f5, f7 are taken as zero. For the
lower actuator location (xl, yl), the forces f5 and f7

are assumed to be effective and f1, f3 are taken as
zero. Similarly, the displacement in the y direction
is given as

yu = yg + Luθx

yl = yg + Llθx
(12)

Repeating the same procedure, the transformed
equations are derived as

ÿu = au

[
Kui

2
2

(Y0 − yu)2
− Kui

2
4

(Y0 + yu)2

]

ÿl = al

[
Kli

2
6

(Y0 − yl)2
− Kli

2
8

(Y0 + yl)2

] (13)
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FIGURE 2: Flywheel-AMB systems

CONTROL DESIGN

Servo Control Structure
The standard backstepping design which uses

the control structure shown in Figure 3(a) does
not include any integral action in control input. In
a controller, integral part makes the steady-state
error zero with increasing of time. Therefore, an in-
tegral part will be added artificially as depicted in

Figure 3(b). Since each axis became independent
of each other after the transformation of the equa-
tions to actuator locations, the design of the non-
linear zero-bias control may be defined only for one
axis. To this aim, the system equation obtained in
equation (8) for upper AMB may be written as
follows

ẋr = e
ė = ṙ − ẋu

ẍu = auf
y = xu

(14)

Using the variable transformations r = 0, x1 = xr,
x2 = xu, x3 = ẋu, the control system is written as

ẋ1 = x2

ẋ2 = x3

ẋ3 = auf
y = x2

(15)
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FIGURE 3: Servo control system structure
(a) without integral (b) with integral

Backstepping Procedure
Since the control system given in equation (15)

is third-order, the controller will be developed in
three steps. In backstepping, error variables are
defined in each step and stability of the control
system is satisfied by control Lyapunov functions.

Step 1.
Suppose the output error variable z1 is defined as:

z1 = y − yd (16)

where yd is the desired value of the output y. De-
riving z1 with respect to time such as

ż1 = ẋ1 − ẏd

= x2
(17)

Note that derivative of the desired value yd be-
comes zero due to its constant value. In equation



(17), x2 behaves as a virtual control input. Defin-
ing a new error variable to eliminate x2 such as

z2 = x2 − α1(x1) (18)

Using equation (18), the derivative of z1 becomes

ż1 = z2 + α1(x1) (19)

Here α1(x1) represents the stabilizing function.
Suppose a candidate Lyapunov function is defined
as

V1 =
1
2
z2
1 (20)

Taking the derivative of V1, one can get

V̇1 = z1ż1
= z1[z2 + α1(x1)]

(21)

Selecting the stabilizing function as follows:

α1(x1) = −c1z1 (22)

where c1 > 0. The derivative V̇1 becomes

V̇1 = −c1z2
1 + z1z2 (23)

As is seen above, a global stability condition is not
satisfied since z1z2 term exists.

Step 2.
In this step, the behavior of error variable z2 will
be investigated. First, time-derivation of z2 is

ż2 = ẋ2 − α̇1(x1)
= x3 + c1x2

(24)

To eliminate x3 in above equation, a new error vari-
able z3 is defined as

z3 = x3 − α2(x1, x2) (25)

Now, the derivative of z2 becomes

ż2 = z3 + α2(x1, x2) + c1x2 (26)

With the extension of error variables, a new Lya-
punov function is defined as

V2 = V1 +
1
2
z2
2 (27)

The time-derivative of V2 is

V̇2 = V̇1 + z2ż2
= −c1z2

1 + z1z2 + z2[z3 + α2(x1, x2) + c1x2]
(28)

If the second stabilizing function is selected as

α2(x1, x2) = −c2z2 − z1 − c1x2 (29)

then, the derivative of Lyapunov function reduces
to

V̇2 = −c1z2
1 − c2z

2
2 + z2z3 (30)

where c2 > 0 is a design parameter. Still a global
stability condition is not satisfied due to z2z3 term
in the second step.

Step 3.
In the final step, the time-derivative of z3 is ob-
tained as

ż3 = ẋ3 − α̇2(x1, x2) (31)

Taking the derivative of α2

α̇2(x1, x2) =
∂α2

∂x1
ẋ1 +

∂α2

∂x2
ẋ2 (32)

Equation (31) becomes

ż3 = auf − ∂α2

∂x1
x2 − ∂α2

∂x2
x3 (33)

With the increasing number of error variables to
(z1, z2, z3), Lyapunov function is extended as

V3 = V2 +
1
2
z2
3 (34)

Continuing the derivation process, one can get

V̇3 = V̇2 + z3ż3
= −c1z2

1 − c2z
2
2 + z2z3

+z3

[
auf − ∂α2

∂x1
x2 − ∂α2

∂x2
x3

] (35)

If the control input f is selected as

f =
1
au

[
−c3z3 − z2 +

∂α2

∂x1
x2 +

∂α2

∂x2
x3

]
(36)

The time-derivative of V3 satisfies a global stability
such as

V̇3 = −c1z2
1 − c2z

2
2 − c3z

2
3 < 0 (37)

TEST SYSTEM
The vertically designed five axis controlled ac-

tive magnetic bearing system shown in Figure 4 is
used for modeling, simulations and experiments.
The AMB system which is manufactured by Koyo
Seiko Corporation Ltd., Japan, consist of a CFRP
flywheel-AMB, a control unit and a high-frequency
inverter. The parameters of the AMB system is
given in Table 1.

FIGURE 4: Flywheel-AMB test system



TABLE 1: Parameters of the rotor-AMB system

Symbol Value(FW) Unit
M 13.672 kg
Ir 1.73× 10−1 kgm2

Ia 1.86× 10−1 kgm2

Lu 4.99× 10−2 m
Ll 1.676× 10−1 m
L1 2.535× 10−2 m
L2 1.8815× 10−1 m
Ku 4.47× 10−6 Nm2/A2

Kl 4.47× 10−6 Nm2/A2

X0, Y0 0.25× 10−3 m

EXPERIMENTS
A feedback control system is built with a digital

signal processor(DSP) to realize experiments. The
control system is a multi-input multi-output struc-
ture with four displacements measured by four
eddy-current position sensors and eight computed
control current signals for actuators. The control
inputs are supplied to electromagnets through D/A
converters and power amplifiers.

The trajectories of the geometric center point
of the rotor is generally used to evaluate the control
performance. The experimental results are pre-
sented for near frequencies of the rigid mode of
the rotor. The orbits of the rotor obtained at 100
Hz are shown in Figure 5 for lower and upper actu-
ator locations. The control currents in the x direc-
tion of the upper and lower electromagnets during
the rotational experiment are shown in Figures 6-
7. As seen in the figure, only one electromagnet
has a current flow at any given time depending on
the rotor displacement. For the same system, Fig-
ure 8 shows the orbits at 110 Hz rotational speed.
Figures 9-10 are control currents for the same ro-
tational speed.
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FIGURE 5: Orbit of the rotor for ω = 100 Hz
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FIGURE 6: Control currents for ω = 100 Hz
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FIGURE 7: Control currents for ω = 100 Hz
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FIGURE 8: Orbit of the rotor for ω = 110 Hz
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FIGURE 9: Control currents for ω = 110 Hz
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FIGURE 10: Control currents for ω = 110 Hz

CONCLUSIONS
As a research field, zero-bias active magnetic

bearings have potential to reduce power consump-
tion and bearing losses. In this research work, a
force base switching with a backstepping control
approach is successfully applied to a zero bias AMB
and obtained reasonable results. In present situa-
tion, much research works are needed using differ-
ent switching rules, power amplifiers and nonlinear
control approaches for zero bias AMBs.
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