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ABSTRACT

Feedback linearization is a promising approach to
solve the nonlinear control problem for active mag-
netic bearing systems. In this paper, feedback lin-
earization is employed in combination with robust
control techniques for the regulation of a machine
tool system actuated by a magnetic bearing. A
nonlinear, high order polynomial model was devel-
oped based on experimental calibration of the mag-
netic bearing. The effect of the amplifier and sen-
sor dynamics on the feedback linearization perfor-
mance was also determined and compensated. Fi-
nally, an uncertainty framework was proposed for
the linearized plant and a robust controller was de-
signed via µ synthesis. Experimental results show
that the feedback-linearized active magnetic bearing
system can achieve both high performance as well as
stability over the entire bearing clearance.

1 INTRODUCTION

Active Magnetic Bearings(AMBs) have been of in-
creasing interest to the manufacturing industry, due
to their high force capacity, relatively large travel
range, high speed capability, and potential for high
damping via active control. However, AMB systems
are highly nonlinear and open loop unstable. Thus,
when high performance is desired, they present
an extremely challenging control problem. In re-
cent years, feedback linearization approach has been
widely discussed in AMB applications [1, 3, 4, 5].
This approach utilizes a complete nonlinear descrip-
tion of an AMB system to yield a feedback law that
transforms the plant to a linear one. Therefore, feed-
back linearized AMB systems should behave linearly
over a much larger travel range than achievable us-
ing traditional Jacobian linearization [7].

Feedback linearization approach has been widely
implemented in simple magnetic levitation sys-
tems consisting of one or two electromagnets [1,
3, 5]. However, for typically-used multiple-pole ra-

dial magnetic bearings, most investigations have fo-
cused on theoretical analysis and computer simula-
tion [8, 9]. Few experimental results have been re-
ported in the literature. One reason for this situa-
tion is the difficulty of developing simple yet accu-
rate multiple-pole AMB models, which have a signif-
icant influence on the success of feedback lineariza-
tion approach.

Feedback linearization transforms the original
nonlinear system into a linear one through exact can-
cellation of system nonlinearities. In practice, this
cancellation will not be perfect due to the uncer-
tainty in bearing models (e.g. variations in coil re-
sistance due to changes in bearing temperature [3]).
In this paper, we propose an uncertainty structure
for the linearized plant nominal model. This un-
certainty description can be validated from experi-
mental results. As a consequence, the feedback lin-
earization approach can be combined with linear ro-
bust control techniques to guarantee the nonlinear
system stability and performance in the presence of
model uncertainty and disturbances.

For our experiment, we employ a single axis ma-
chine tool system driven by an AMB actuator. Due
to the large cutting force in machining process, and
the compliance of the structure, the bearing journal
must be capable of large travel within the clearance.
Feedback linearization is applied on this system. We
will focus our discussions on the following imple-
mentation issues: (1) development of a high order
AMB parametric model to fit experimental calibra-
tion data; (2) design of a look-up-table to implement
the feedback linearization algorithm within the dig-
ital controller; (3) evaluation and compensation of
the influence of the dynamics of AMB system pe-
ripheral devices, such as power amplifiers and sen-
sors, on the linearized system; and (4) estimation of
the uncertainty and development of a robust con-
troller.

The arrangement of the rest of this paper is as
follows. In Section 2, the concept of feedback lin-
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Figure 1: Feedback linearized AMB system.

earization is briefly discussed. Section 3 presents
our experimental test rig. Section 4 follows with an
examination of AMB modeling and a nonlinear com-
pensation. The influence of the amplifier and sensor
dynamics on our system is examined in Section 5.
In Section 6, we propose a feedback linearization un-
certainty framework, which is then used in a robust
controller design procedure in Section 7. Finally, a
summary is provided in Section 8.

2 FEEDBACK LINEARIZATION

For a laminated magnetic bearing, its electromag-
netic force, f , can be expressed as a static nonlinear
function of the controlled coil current, Ip, and the
journal displacement from the center position, x:

F = f(Ip, x) (1)

We can choose the controlled current Ip as the
inverse function of Eqn(1) with respect to the dis-
placement x and a reference force Fc

Ip = f−1(Fc, x) (2)

to cancel the nonlinear function f(Ip, x). Conse-
quently, the system is linearized. Figure 1 shows
this feedback linearization in block diagram form.

We can remark that this feedback linearization
scheme does not depend on the plant dynamics since
the nonlinear electromagnetic force is linearized be-
fore affecting the plant’s states. The resulting linear
system is valid across the entire range of operation.
Furthermore, since the system from Fc to x behaves
linearly, the control problem on the original nonlin-
ear system is simplified to a linear control problem.
Finally, since Fc = F , the linear controller can be
designed based on the plant dynamics from F to x
as if the AMB does not exist.

3 AMB TEST RIG

Figure 2 shows the machining test rig with AMB
actuator employed in our study. The test rig con-
sists of two platforms connected by a leaf spring, and
constrained to single axis rectilinear motion in the

feed direction by flexures. The tool platform holds
a cutting tool and the actuator platform is rigidly
connected to the bearing journal, which is made of a
cobalt iron laminations. This journal can be driven
by the AMB stator which is mounted above the actu-
ator platform. The magnetic bearing stator used is
a conventional eight pole radial design. Two groups
of coils, driven by two identical 150V Pulse Width
Modulation (PWM) power amplifiers, generate op-
posing attractive forces along the feed direction. A
bias current of 1A is applied to coils to guarantee
sufficient force slew rate for the application. The air
gap of the bearing is approximately 250 µm on each
side. An eddy current transducer is used as a po-
sition sensor to measure the journal motion (hence
air gap).

The entire test rig is mounted on a lathe and can
be fed into a rotating workpiece to conduct cutting
operations. A dSPACE DS1103 digital control sys-
tem is applied on the AMB actuator.

Cutting
Tool

Flexure Journal

Leaf Spring Stator

Figure 2: Photograph of the AMB test rig.

4 AMB MODELING

4.1 AMB CALIBRATION

An accurate nonlinear model is necessary for the
feedback linearization. Due to the complexity of
electromagnetic field, it is difficult to obtain accurate
analytical models for AMBs. However, as stated in
Eqn (1), the force-current-gap relationship can be
established from appropriate experimental tests on
the AMB. Therefore, we may avoid the disadvan-
tages of analytical models.

For calibration, we used a stiff spring to pull the
actuator platform along (or opposite to) the feed di-
rection. A PID controller was designed to stabilize
the actuator platform at any specified air gap. The
spring force, air gap, and bearing current were mea-
sured by a load cell, eddy current sensor, and current
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monitors, respectively. The calibration was carried
out in the following manner. With a known spring
force applied and a specified position offset on the
platform, the PID controller regulated the AMB’s
current to generate the proper electromagnetic force
to balance the external force acting on the platform:

F = −Fspring − kx (3)

where k is the static stiffness of the actuator plat-
form flexures, and Fspring is the measured spring
force obtained from the load cell. After transients
have decayed, the calculated electromagnetic force,
the specified air gap, and the corresponding mea-
sured input current together are one set of static
calibration data. The AMB was calibrated at differ-
ent positions over the entire clearance, and at dif-
ferent coil current ranging from −1A to 1A. During
the calibration, the AMB was degaussed frequently
to reduce the effect of hysteresis. Figure 3 shows the
calibration results, which confirms the nonlinearity
of the AMB.
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Figure 3: AMB calibration results.

4.2 PARAMETRIC AMB MODEL

Applying the multi-variable Taylor series expansion
on Eqn(1) around Ip,0 = 0 and x0 = 0, we can get

f(Ip, x) = a0 + a1Ip + a2x + a3I
2
p + a4Ipx +

a5x
2 + a6I

3
p + a7I

2
px + . . . (4)

where a0,a1,. . . are the coefficients in the Taylor ex-
pansion. These values can be determined by a least-
squares fit of the calibration results. Note that the
traditional Jacobian linearization uses only the first
three terms in Eqn(4), while the order of the gen-
eral nonlinear model may be chosen as desired so as
to achieve an accurate representation over the entire
operating range.

It was found that inclusion of terms up to 5th order
resulted in a highly accurate representation of the
data. A comparison of the errors for this model and
that of the standard Jacobian linearization is shown
in Figure 4.
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Figure 4: Force errors of the 5th order nonlinear
(left) and the Jacobian linear (right) models.

4.3 NONLINEAR COMPENSATOR

For a static feedback linearization, we seek to find a
nonlinear compensator that yields AMB current in-
puts such that the applied electromagnetic force, F ,
equals the reference force provided to the nonlinear
compensator, Fc, at the measured bearing air gap
x. Therefore, the proper current, Ip, should be the
solution of the equation

Fc − f(Ip, x) = 0 (5)

Substituting the AMB polynomial model of
Eqn(4) into Eqn(5), we can solve for Ip. Although
there are multiple solutions due to the high order of
the AMB model, the appropriate solution may eas-
ily be chosen by satisfying two conditions: Ip ∈ R
and |Ip| ≤ 1A (the bias current).

The linearizing current was calculated for each air
gap from −250µm to 250µm, with 5µm increments,
and each force from −1000N to 1000N , with 10N
increments. Then these results were stored in a 2-D
Look-Up-Table (LUT). For inputs not in the table,
the LUT uses either interpolating or extrapolating
techniques to perform linear mapping from inputs
Fc and x to output Ip. Compared to the tradi-
tional inverse function computation methods, LUT
has better computational efficiency, and is easier to
implement in the dSPACE digital controllers.

5 EFFECT OF SYSTEM DYNAMICS

Ideally the LUT generates the proper current to can-
cel the AMB nonlinearity independent of the fre-
quency of the desired force signal. Nevertheless,
in practice, the position input signal to the LUT
is not dynamically equivalent to the actual signal
due to the dynamics of the devices conducting the
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measurement. The air gap signal is colored by the
eddy current sensor and anti-aliasing filter dynam-
ics. Furthermore, the current signal commanded by
the LUT is not equivalent to the actual coil current
signal. Rather, the later is a colored version of the
command signal due to the PWM and D/A con-
verter dynamics. These dynamics increase the error
of the cancellation in the system, and degrade the
feedback linearization performance.

In order to attenuate this problem, high band-
width sensors and amplifiers should be used in the
system. However, even with good devices, it may
be necessary to employ carefully designed correc-
tive filters, connected in series with these devices,
to compensate their dynamics. These filters should
make the input/output signals of LUT very close to
the corresponding signals in AMB, over the control
bandwidth of the system.

An alternative approach to feedback linearization
of this system would be to include these dynamics
into the feedback linearization itself (i.e., a dynam-
ics feedback linearization as opposed to the static
approach taken here - see [3] for example). How-
ever, the authors believe that this more technically
rigorous approach would prove to be very difficult to
carry out considering the complexity of the actuator
dynamic behavior.

Figure 5 shows the feedback linearized system di-
agram with two digital filters. Filter I is used to
compensate for the dynamics of the eddy current
sensor, anti-aliasing filter, and A/D converter. Fil-
ter II is used to compensate for the dynamics of the
D/A converter and PWM amplifiers. These filters
were designed based on the open loop frequency re-
sponses of these two signal paths. Figure 6 shows
the frequency responses before and after using these
two filters. The comparison shows that both mag-
nitude variations and phase lag of the signal paths
were reduced by using these filters.

One method to verify the effectiveness of this com-
pensation is to examine the frequency response of
the feedback linearized system. If perfect lineariza-
tion was achieved, the linearized system’s frequency
response from reference input Fc (as shown in Fig-
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Figure 5: Filtered system diagram.
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Figure 6: Frequency responses comparison for sensor
and amplifier signal paths before compensation (thin
line)and after compensation (thick line).

ure 5) to plant output x, Gpfl(jω), would be equal
to the open loop plant frequency response from F
to x, Gp(jω). To evaluate this, impact tests were
performed. A comparison of measured Gpfl(jω)
with and without the filter compensation along with
the measured Gp(jω) is shown in Figure 7. It is
clear that the compensation has greatly improved
the quality of the feedback linearization.
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Figure 7: Open loop frequency response compari-
son. Curve 1: open loop plant frequency response
Gp(jω); Curve 2/3: open loop frequency response
Gpfl(jω), after/before using filters.

6 UNCERTAINTY REPRESENTATION

Feedback linearization renders the nonlinear AMB
and amplifier as essentially a static gain. Therefore,
we can employ the actuator platform’s model as the
nominal model of the whole feedback linearized sys-
tem. Since both the AMB and nonlinear compen-
sator depend on the feedback of the platform dis-
placement, we have developed a displacement feed-
back uncertainty structure, to represent the remain-
ing mismatch between this nominal model and the
linearized systems behavior. Figure 8 shows the
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structure, where the uncertainty is defined as

∆c :=
Gpfl(jω)−Gp(jω)
Gpfl(jω) ·Gp(jω)

(6)

Plant
F c F x

C∆

Figure 8: Complex uncertainty representation.

Experimental validations were conducted to esti-
mate the magnitude of this uncertainty. First, the
position of the platform was regulated by a PID con-
troller. Then, frequency responses of Gpfl(jω) and
Gp(jω) were measured at that position through im-
pact tests. The differences between these two fre-
quency responses were calculated by Eqn (6) at mea-
sured frequencies. Furthermore, in order to evalu-
ate the uncertainty over the entire operating range,
more frequency responses were measured at various
positions. The magnitude of the uncertainty set can
be determined by finding the smallest circle in the
complex plane to enclose almost all of the result-
ing data points. Figure 9 shows the boundary of
our feedback linearization uncertainty, which is esti-
mated from approximately 2500 solutions.
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Figure 9: Uncertainty estimation.

7 ROBUST CONTROLLER DESIGN

µ synthesis offers a systematic framework for the de-
sign of controllers that meet H∞ performance objec-
tives and guarantee robustness to structured model
uncertainty. Figure 10 shows the experiment block
diagram with its uncertainty structure, where the
tool platform and actuator platform blocks contain
their corresponding nominal models; Ks is the stiff-
ness of the leaf spring; FM and xT are the cutting

force input and tool’s displacement, respectively; ∆1

is the unit norm-bounded feedback linearization un-
certainty, and W1 is its weight (i.e., ∆c = W1∆1).

The control goal is to increase machining stabil-
ity by minimizing the tool compliance from FM to
xT , with a reasonable control effort. There are two
fictional complex uncertainties, ∆2 and ∆3, in the
synthesis framework, and their associated weights,
W2 and W3, can be used to specify the system’s
performance goals. If µ < 1 is achieved in synthesis,
then the controller will achieve a tool compliance
less than

∥∥W2(jω)−1
∥∥ at each frequency, and the

controller gain will be approximately constrained by∥∥W3(jω)−1
∥∥.

A µ controller was designed by D-K iterations us-
ing MATLAB µ toolbox. The resulting controller
was 18th order, and was reduced to 6th order via
a balance-and-truncate algorithm without a notable
loss of robustness or performance. For evaluation
purpose, we have introduced a position offset x0 to
adjust the bearing air gap, as shown in Figure 10.
An integral term −50/s was connected in parallel
with the µ controller to improve the static perfor-
mance of tracking x0. The controller was imple-
mented on the dSPACE digital controller with a
sampling rate of 20 kHz.

In order to verify the effectiveness of the feedback
linearization over the entire clearance, seven journal
locations from −180µm to 180µm from center, with
an increment of 60µm, were specified by the offset
signal. The closed loop tool compliances were mea-
sured at each location and these are compared with
the open loop compliance in the left plot of Figure
11. The open loop structure has a lightly damped
resonance frequency at 65Hz, while the closed loop
tool is well damped. The plot shows that the varia-
tion in the frequency response at different locations
is very small, and the closed loop compliance in each
case is below W2

−1 at all frequencies, as specified.
Therefore, the robust performance goal is achieved.
To see the importance of the dynamics compensa-
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Figure 10: Nominal linearized system with uncer-
tainty and performance weights.
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tion filters in the feedback linearization, the closed
loop tool compliance at the center position of the
bearing was also measured after removing both fil-
ters in the system. Its response is shown in the right
plot of Figure 11, and compared with the response
where the filters are employed. As can be seen, the
compensation filters are essential to meeting perfor-
mance goal.
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Figure 11: Tool compliance frequency response.

While the frequency responses from impact tests
verify the system’s small input responses at differ-
ent locations, it is also interesting to see the sys-
tem’s response under a larger input. Therefore, we
applied a band limited white noise input as x0, and
measured the time response of the journal’s displace-
ment. We also put the same input into the nominal
linear system (as shown in Figure 10 without the
uncertainty blocks). Figure 12 shows the measured
response along with the calculated response of the
linear model. It can be seen that the experimen-
tal response closely matches that of the closed loop
linear system over large displacements.
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Figure 12: Linear model vs. experimental journal
displacement when excited by band limited noise.

8 SUMMARY

A feedback linearization approach has been devel-
oped using experimental data and implemented on

an AMB test rig. Experimental data are used
to develop a look-up-table to invert the actuator’s
current-force relation. Filters are introduced to com-
pensate the input and output signal of the look-up-
table so as to render the feedback linearized system
as nearly equivalent to the open loop model in spite
of the dynamics of the A/D, D/A, amplifiers, anti-
aliasing filter, and position sensor. Finally a robust
control framework for the feedback linearized system
was proposed. Experimental results demonstrated
that both robust performance and long range sta-
ble movement can be achieved under this feedback
control.
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