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ABSTRACT 
We present the case study of a five-axis high 

speed milling electro-spindle on AMBs. A Finite 
Element Model is developed in order to obtain a 
state-space model of the flexible shaft. This model is 
supplemented by a second state-space model, 
representing the rigid behaviour induced by the 
closed loop composed of the active magnetic 
bearings, actuators, sensors and the controller. 

An active unbalance control algorithm has been 
developed, based on the considerations of [1]. This 
method gives an absolute control on the unbalance 
vibrations. We obtain excellent results, as we 
expected. But we also aim at milling steel, at a 
rotational speed close to the rigid modes, and yet this 
method reduces the stiffness of the bearings at the 
rotational speed.  

For stability reasons, we then needed another 
method that could compensate perfectly the 
unbalance without adding any closed-loop to the 
systems. For this open-loop method, a statistical 
study, considering the variance of the estimator and 
various extra signals give good insight on the result. 
We finally present some practical results based on 
milling experiments. 

 
INTRODUCTION 

The machine is a five-axis high speed milling 
electro-spindle on AMBs, equipped with a permanent 
magnet motor. Its maximal power is 40 kW at 40000 
rpm.  

Complex rotors are usually modelled by means 
of Finite Element Method (FEM) to cope with non-
elementary shape of the shaft and of the rotating 
appendices connected to it. A possible output of a 
FEM software is the frequency response (Bode 
diagram) of the shaft, which most of the time is 
enough for the enlarged PID controller design. But 
this is not enough for time simulations of advanced 

control algorithms. That’s why we had to extract 
from the frequency response a transfer function 
numerical model. We used the singular value 
decomposition method for a frequency domain 
Identification. In order to minimise the order of the 
identified model, a pole-zero cancellation method can 
be used afterwards, but whatever the result may be, 
the order remains higher than the real one if we want 
to preserve the accuracy for time domain simulations. 

The system seemed to show few gyroscopic 
effects (responsible for the modes splitting); the 
decision was then taken to consider the frequency 
responses at the nominal speed only. The tool was 
also modelled and taken into account in the 
estimation. We illustrate the comparison between the 
reduced-order estimated transfer function and the 
original frequency response, for the four terms of the 
matrix-form model. It can be observed that a better 
accuracy is achieved on the modes than on the central 
zeros. 

The aim is to identify the unbalance in order to 
minimize the command, responsible for the 
vibrations, before crossing the rigid mode or around 
its value. For stability reasons, the well-known 
unbalance control algorithm ABS can only operate 
when the rotational speed is about 20% greater than 
the frequency of the rigid mode, which value is 
imposed at 150 Hz by the means of the controller. 
Yet, the objective is to use the spindle for milling 
steel, precisely at a speed close to this frequency. 
That’s why a new method that preserve the stability 
of the system had to be designed.  

An improved unbalance control algorithm based 
on [1] has been developed in order to minimise the 
vibrations for an optimal operation of the spindle. For 
stability reasons, we then needed another method that 
could compensate perfectly the unbalance without 
adding any closed-loop to the systems, because the 
first method reduced the stiffness at the rotational 
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speed. It’s a four-step method that consists in 
identifying both the unbalance and the synchronous 
sensitivity function with two measurements, thanks to 
two different synchronous signals added. For this 
open-loop method, a statistical study, considering the 
variance of the estimator and various extra signals 
give good insight on the result. We finally present 
some practical results based on milling experiments. 

 
DESCRIPTION OF THE MILLING SPINDLE 

The high speed milling machine considered is a 
machine tool spindle equipped with a permanent 
magnet motor (see Figure 1). It uses a five-axis AMB 
technology. 
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FIGURE 1: design of the milling machine 
 

The milling machine design: (1) 80 mm 
diameter shaft, (2) HSK tool attachment, (3) OTT 
tool changer, (4) permanent magnet motor, (5) radial 
bearings on each side of the motor, (6) large thrust 
bearing disc at the rear part, (7) two auxiliary bearing 
sets for additional safety, (8) motor drive inverter and 
magnetic bearing control system cabinet.  

The DC brushless, permanent magnet motor (4) 
design is unique.  Powerful samarium-cobalt magnets 
are aligned along the shaft axis and contained by a 
carbon-fibre sleeve.  This design has been tested and 
operated for 6 years.  The main feature is the fact that 
this type of motor is synchronous.  Synchronous 
motors offer much lower losses and better control 
accuracy over asynchronous motors. The main 
characteristics of the milling spindle are indicated on 
table 1. 
 

Speed 0-40000 rpm 
Max speed 45000 rpm 

Nominal power 33 kW at 40000 rpm 
Max power 40 kW at 40000 rpm 

Outer Diameter 220h6 
Tool attachment HSK 50 A 

ATC OTT (DIN 69893) 
Acceleration (0-V max) 7 seconds 

Braking (V max-0) 7 seconds 
 

TABLE 1: Main characteristics of the spindle 
 

Compared with the conventional milling 
process, the high speed milling on AMBs provides 
many advantages: any tool rupture is instantaneously 
detected either in the form of force vibration, shaft 
displacement or sudden unbalance by the computer 
numerical control. The safety system reaction is as 
quick as 200 ms. Automatic stop with no manual 
attendance constitute this unique built-in safety 
design. Moreover, the surface quality of the 
machined parts depends on spindle shaft stiffness; the 
parameters of the dynamic stiffness can be controlled 
through numerical control. 

 
STATE-SPACE MODEL 

We use a Finite Element Method (FEM) to 
predict the flexible behaviour of the system. To 
account for the complex geometry, the discretization 
at the base of the FEM model is usually characterized 
by a high number of nodes and, correspondingly, of 
degrees of freedom. When AMB are concerned, a 
model is necessary to design the control law to 
stabilize the complete system represented by the shaft 
and the AMBs. 

It is possible to extract from the frequency 
response a transfer function in order to have a 
numerical model. We use in this case a singular value 
decomposition method for a so-called frequency 
domain identification. In order to minimize the 
identified model, a pole-zero cancellation method can 
be used afterwards, but whatever the result may be, 
the order remains higher than the expected one. 
Moreover, the accuracy of estimation for the zeros is 
not that good, and this kind of model is a final issue, 
when the machine is already built and suspended, 
which is restrictive. 

What we need is a polyvalent numerical model, 
not only for designing the control laws needed to 
stabilize the system but also for simulating anti-
vibration algorithms, making time domain 
simulations and so on. 

The first step consists in building a model for 
the flexible rotor that represent the state of each node. 
We use the method presented in [2] in order to extract 
the data we need for building the modal state-space 
model of the flexible shaft.  
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The typical values to define the complete 
geometry of the rotor are 50=n  nodes, and 4=p  
degrees of freedom per node. The following set 
equations (1) and (2) represent the state-space form 
of the mechanical equation of the flexible system (see 
[3]). 
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KGDM ,,,  are respectively the mass, damping, 
gyroscopic and stiffness matrix. X  is the vector 
containing the np  degrees of freedom. F  represents 
the electromagnetic forces, and B  the nodes where 
those forces are applied. Ω  is the rotational speed. 
δ  is the state vector containing all the displacements 
for all the nodes. 

The resulting state-space model has an order 
npN 2=  (usually 400=N ), that makes it uneasy or 

even heavy to use for calculation. Moreover, such an 
accuracy concerning all the nodes is not necessary. 
We propose a modal reduction of the system. The so-
called modes are the square roots of the eigenvalues 
of the KM 1−  matrix. Let Φ  be the matrix 
composed of the eigenvectors associated to the m  
flexible modes we want to observe. A new state 
vector µ  of size m  as described in equation (4) is 
used. 

 
µΦ=X  (4) 

 
A matrix of eigenvectors Φ  is chosen as to 

obtain IMT =ΦΦ . Let χ  defined by (5) be the state 
vector of the modal state-space model. 
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we then obtain with (6) and (7) the expression of the 
state-space modal model of the shaft: 
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The order of this model is m2 . Once a flexible 

modal model for the rotor is obtained, we need to 
take into account the rigid behaviour of the system. 

The rigid part of the system depends on its geometry, 
the positions of the actuators and the positions of the 
detectors (see [4]). 

Any movement of a rigid rotor inside its AMBs 
can be represented as a combination of a translation 
movement and a tilting movement. The bearings 
generate the forces 1F  and 2F . The displacements of 
the rotor on the detectors are called 1x  and 2x , while 
x  is the displacement of the center of gravity G . α  
is the angle of rotation of the rotor during a tilting 
movement around G . 1bL , 2bL , 1dL , 2dL  are 
respectively the distances from G  to the first and 
second bearings, and to the first and second detectors. 
Let J  be the axial moment of inertia of the rotor, and 
M  its mass. 

We obtain the following state-space form in 
equations (8) and (9). 
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MODEL VALIDATION AND CONTROLLER 

The final model for the rotor equipped with its 
magnetic bearings is composed of the sum of two 
terms: the rigid part of the magnetically suspended 
body, and the expression of the flexible behaviour of 
the rotor. 

The model we obtain for the machine is then 
compared to identified transfer functions. We take 
into account four transfer functions, corresponding to 
the transfers from the forces to the displacements in 
the V plane, as given in (10):  
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The system seemed to show few gyroscopic 

effects; we then consider the frequency responses at 
the nominal speed only. The tool was also modeled 
and taken into account in the estimation.  

The following figure 2 illustrates the comparison 
between the reduced-order estimated transfer 
function (solid) and the original frequency response 
(dotted), for the two crossed terms of the matrix in 
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equation (1): 12T  and 21T . It can be observed that a 
better accuracy is achieved on the modes than on the 
central zeros. 
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FIGURE 2: Bode diagrams of 12T  and 21T  

 
The controller is tuned considering the evolution of 
the modes. The robust control leads to the following 
sensibility function for axis 11 (figure 3).  
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FIGURE 3: Sensibility function for axis 11 

 
 
UNBALANCE CONTROL 

For a rotor, the unbalance represents the 
difference between the axis of inertia and the 
geometrical axis imposed by the bearings. This gap 
comes from the imperfections of the rotor balancing. 
During the rotation, the unbalance can be observed 
by the means of the vibrations it induces on the 
system. Cancelling the unbalance effect on the 
system thus consists in merging the rotational axis of 
the bearings and the axis of inertia of the rotor.  

Let m  be a mass, placed at a distance d  of the 
axis of inertia of a rotor with a rotational speed of Ω .  

 

This mass creates a centrifugal force:  
 

)sin(2 ϕ+ΩΩ= tdmF  (11) 
 
The unbalance is the md  product. If M  is the 

mass of the rotor, this product can be reduced by 
defining: 

 

M
md

=ε  (12) 

 
which is the distance between the axis of inertia and 
the geometric axis of the rotor. 

In order to understand the unbalance 
compensation method, let’s consider a simplified 
SISO model of the system, without the gyroscopic 
effects.  

 
FIGURE 4: Unbalance model 

 
)sin( ϕε +Ω= tUnb  represents the unbalance 

signal. ξ  is an external input for the compensation 
signal, and α  is the measurement used by the 
control. The aim is to minimize the oscillations of the 
control signal u  and conjointly the force due to 
actuators, responsible for the vibrations, before 
crossing the rigid mode or around its value. If we 
choose Unb=ξ , the compensation is perfectly 
achieved and unbalance vibration is no longer present 
in the control signal u . Thus, we need to identify 
Unb . Actually, an unbalance control algorithm called 
ABS (Active Balancing System) exists [5], but for 
stability reasons, it can operate only when the 
rotational speed is about 20% over the frequency of 
the rigid mode (about 100 Hz for most machines). 

We apply the method called AVR and described 
in [1]. Its general structure is composed of 
synchronous sine and cosine generators, low-pass 
filters and a matrix M  representing a rotation of 
angle θ , which is the main parameter of the 
compensation method. The role of the synchronous 
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Position  
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sine and cosine generators and the low-pass filters is 
to extract the synchronous part of the measured signal 
α . 

The low-pass filter cut the harmonics further to 
this operation. The input of the compensation 
algorithm is the measurement α , and its output is the 
compensation signal we subtract ξ . We use a high 
gain for the low-pass filters because the attenuation 
of the synchronous signal due to unbalance is all the 
more important since this gain is high. For the output 
signal, after the rotational matrix M , the sine and 
cosine generators are used to recompose the signal. It 
had been shown by a study of stability that the angle 
θ  of the rotational matrix M  has to be chosen 
through the transfer function: 
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More precisely, the angle θ  is determined 

thanks to the phase curve of the sensibility function 
(see figure 3). The complete description of the tuning 
of θ  is available in [1]. A middle range value is used 
for the application because the compensation has to 
be shared as well as possible between the two limits 
of the phase area on which we want to eliminate the 
unbalance: 
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This leads to a value of °= 85θ . Even if the 

ideal compensation is reached only for the middle 
point, the system remains stable and convergent on a 
large zone.  

Considering the phase of the compensated 
system cϕθϕ =− , the theoretical limit of stability 
is reached for °= 90cϕ . In fact, the more we get 
close to this limit, the more we are likely to 
destabilize the system. For application purposes, the 
simulations have shown that stability is preserved 
with good transitory behaviour if:  
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That was confirmed by practical results. We 

need such a margin to cope with modeling errors or 
structural defaults. The results we obtain with AVR is 
shown on figure 5. It shows the power spectrum 
analysis on the first axis with (solid line) and without 
AVR (dotted line). 
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FIGURE 5: Spectrum analysis 
 

This method gives excellent results, but our objective 
also consists in milling steel. The rotational speed at 
which we plan to mill is close to the frequency of a 
mode. Thus, the inconvenience of the AVR algorithm 
is that it decreases the stiffness of the system for the 
frequencies around the rotational speed. That’s why a 
new method that preserve the stability of the system 
had to be designed.  

Let Ω  be a constant rotational speed. A first 
signal 1ξξ =  is added. Then a first measure is made: 
 

λξα +−Ω= ))(( 11 BaljS  (16) 
 
With λ  gaussian noise. A second signal 2ξ  is then 
applied and a new measure 2α  is made: 
 

λξα +−Ω= ))(( 22 BaljS  (17) 
 
In order to choose an unbalance estimator, we need to 
use the nominal case without noise ( 0=λ ). From 
now on, we just need to resolve the system 
constituted by the equations (16) and (17). Then, we 
obtain: 
 

12

21ˆ
ξξ
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−
−
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ϕε
αα
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21

1221 ˆˆ jeB =
−

⋅−⋅
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We studied the average and the variance of the 

unbalance estimator (19) in order to find out how 1ξ  
and 2ξ  can be chosen to give the best properties 
possible for the estimator.  

We can see on figure 6 the amplitude of the 
variance of the unbalance estimator versus the phases 
of the signals added (Parameter 1 and Parameter 2, in 
degrees), when the amplitudes of 1ξ  and 2ξ  are 
fixed and different. 
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The unbalance vector chosen for the simulation 
has a phase of 30 degrees. We observe on figure 6 
that the variance of the estimator increases when the 
phases of the signals added 1ξ  and 2ξ  get closer. On 
the other hand, we see that when the two phases are 
close from each other and close from the phase of the 
unbalance, the estimator has a variance of almost 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 6: Variance of the unbalance estimator 
 

The best situation consists in choosing 1ξ  and 

2ξ  out of phase, so that the estimator presents the 
best variance possible.  

 

Bode Magnitude Diagram

Frequency (Hz)

M
ag

ni
tu

de
 (d

B)

50 100 150 200 250 300 350 400 450
-500

0

500

1000

1500

2000

2500

3000

3500

4000

 
 
FIGURE 7: Time-domain experiments 
 
We first applied this method to the model 

obtained before. We then made experiments on the 
spindle. Figure 7 shows the comparison of two 
accelerations. The ABS is applied at 400 Hz. The 
upper curve represents an acceleration without 
unbalance algorithm, and the lower one shows the 

result of an acceleration with the last algorithm 
applied from 150 Hz. 

We have now the opportunity to use either ABS, 
AVR or the last method for unbalance control, 
depending on  the application. The advantage of this 
last method come from the fact that it is a complete 
open-loop method, very useful if, as this is the case 
for milling steel, we need to identify and eliminate 
the unbalance and at the same time maintain the 
stability (therefore the stiffness). 

 
CONCLUSION 

The objective of this study was to develop a new 
method for unbalance compensation of a milling 
spindle on AMBs. This algorithm needs to work for 
any rotational speed and thus minimize on the whole 
range of speed the synchronous vibrations due to 
unbalance. 

An accurate model has been developed and used 
for the tuning of the controller and simulation of the 
unbalance control algorithm. It has been built in two 
steps : a modal state-space model for a flexible and 
gyroscopic rotor combined with a state-space form 
for the rigid behaviour of the spindle. 

The first algorithm applied is AVR. It reduces 
perfectly the vibrations due to the unbalance, but 
reduces the stiffness for frequencies around the 
rotational speed. We then developed an open-loop 
method with a finite number of measures and signals 
added. This method needs unbalance to be slightly 
constant, which is the case here. Both methods have 
been applied successfully to the spindle. 
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