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ABSTRACT 
We present here a multi-objective control 

algorithm based on the use of Youla parameterization 
and an independent Lyapunov function for each 
objective. We choose to consider two constraints: one 
with the 2H  norm and one with the ∞H  norm. The 
general optimisation problem is presented with the 
LMI expression of the constraints, followed by the 
presentation of the AMB machine model. 

The model we use has been developed as 
follows: we consider that the rigid and flexible 
behaviour of the system are independent. Thus, we 
develop a nodal state space model of the flexible 
shaft, reduced into a modal model. The rigid 
equations of the system lead to a second state space 
model. The two parts are used conjointly in order to 
build a complete model of the AMB suspended 
system.  

We introduce the matrix manipulations that lead 
to the final LMIs and the general algorithm as 
detailed in [6] and [7]. The controller we obtain is 
analysed and compared to the initial one. 

 
INTRODUCTION 

Modern robust control techniques often demand 
compromises among different or even conflicting 
objectives. Most of the time, we force the controller 
to satisfy simultaneously different performance and 
robustness objectives which are imposed on different 
channels of the closed-loop plant. 

Some discussion about multi-objective control 
were first introduced by Boyd & Barrat ([1]), Dorato 
([2]), and Khargonekar & Rotea ([3]). In particular, 
the mixed H2/H∞ problem has received many 
attentions.  

Some convex optimisation formulations have 
been derived but such methods are generally 
conservative: they use a single common Lyapunov 
function for each synthesis objective and a change of 

variable which simultaneously affects this Lyapunov 
function and the controller ([4]), or they use infinite 
dimensional optimisation ([5]). More recently, Youla 
parameterisation has proved that it could be useful to 
reduce this conservatism ([6], [7]).  

The subject of our study is to present a multi-
objective control algorithm based on the Youla 
parameterisation, using an independent Lyapunov 
function for each objective (see [6]). We use a change 
of variables on these functions but not on the 
controller, and an observer-based structure which 
allows to reduce the degree of the controller. The 
solution is obtained using LMI optimisation that is 
now a computationally tractable framework. It 
consists in minimising a linear combination of the 
different objectives ([7]). 

This multi-objective control method is then 
applied to an Active Magnetic Bearing (AMB) 
rotating machine (air compressor). The model of the 
machine is first presented, along with the method 
developed to build it, based on the joint consideration 
of the rigid and flexible part of the rotor. The Youla 
parameterisation then gives specific properties to the 
system. The observer-based structure allows to 
reduce the degree of the controller. The optimisation 
of the Youla parameter Q is at the end expressed as a 
LMI problem. 

Contrary to usual approaches, the proposed 
method allows to choose different Lyapunov 
functions for each objective without loosing 
convexity. This is a crucial point to reduce the 
conservatism. Indeed each objective can be 
considered independently. 

 
NOTATIONS AND DEFINITIONS 

The plants considered here are finite 
dimensional discrete LTI systems. The closed-loop  
system is represented by the diagram of figure 1.  
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FIGURE 1: Closed-loop representation 
 
u  denote the control, y  the measured output, 

iw  the external inputs, iz  the controlled outputs. The 
transfer functions iT  from iw  to iz  are used to 
specify two different robustness or performance 
objectives. 

We choose for the state-space representations of 
the plant P  and controller K  the following form 
detailed in equation (1) and (2). We assume 0=yuD .  
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Interconnection of two plants will be noted by 

the Redheffer star product. In particular, the closed 
loop system of figure 1 is noted KP∗ . The 
specifications and objectives under consideration in 
this paper are ∞H  and 2H  norm constraints, used to 
express frequency domain specifications. They are 
considered below with an LMI formulation and can 
be used in the proposed multi-objective control 
approach. 

∞H  performance is useful to enforce robustness 
and to express frequency domain specifications such 
as bandwidth, low-frequency gain, … (see [8]). The 

∞H  norm of the transfer function )(1 zT  from 1w  to 
1z , is defined by: 
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Lemma 1 [3]: the ∞H  norm of )(1 zT  is lower than 

1γ  if and only if there exists a real matrix 
011 >= TXX  such that: 
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2H  performance is useful for handling 

stochastic aspects such as measurement noise or 
random disturbance. The 2H  norm of the transfer 
function )(2 zT  from 2w  to 2z , is defined by: 
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Lemma 2 [9]: the 2H  norm of )(2 zT  is lower 

than 2γ  if and only if there exist real matrices 
022 >= TXX  and 0>= TYY  such that following 

conditions (6), (7) and (8) hold: 
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STATE SPACE MODEL OF AMB MACHINE 

Complex rotors are usually modeled by means 
of Finite Element Method (FEM) to cope with the 
non-elementary shape of the shaft and of the rotating 
appendices connected to it. To account for the 
complex geometry, the discretization at the base of 
the FEM model is usually characterized by a high 
number of nodes and, correspondingly, of degrees of 
freedom. When AMB are concerned, a model is 
necessary to design the control law to stabilize the 
complete system represented by the shaft and the 
AMBs. 

The first step consists in building a model for the 
flexible rotor that represent the state of each node. Its 
size N  obviously depends on the number of nodes 
considered. Let n  be the number of nodes, and p  the 
number of degrees of freedom per node. The typical 
values to define the complete geometry of the rotor 
are 50=n  nodes, and 4=p  degrees of freedom per 
node. The following equation (9) is the mechanical 
equation of the flexible system. 

 
BFKXXGDXM =+Ω++ &&& )(  (9) 
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KGDM ,,,  are respectively the mass, damping, 
gyroscopic and stiffness matrix. X  is the vector 
containing the np  degrees of freedom. F  represents 
the electromagnetic forces, and B  the nodes where 
those forces are applied. Ω  is the rotational speed. 
We also define the output equation (10), where C  
corresponds to the nodes we chose to observe. 

 
CXY =  (10) 
 
This corresponds to an order npN 2=  of the 

resulting state-space model, for which the state vector 
δ  is defined as follows (11). 
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The nodal state-space model is defined by the 

following set of equations (12) and (13). 
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The main drawback of this model is its order 

(usually 400=N ), that makes it uneasy or even 
heavy to use for calculation. Moreover, such an 
accuracy concerning all the nodes is not necessary. 

Therefore a modal reduction of the system with 
the modal state vectors given by the FEM software is 
used. The so-called modes are the square roots of the 
eigenvalues of the KM 1−  matrix. Let Φ  be the 
matrix composed of the eigenvectors associated to 
the m  flexible modes we want to observe. A new 
state vector µ  of size m  as described in equation 
(14) is used. 

 
µΦ=X  (14) 

 
The equations (9) and (10) then become (15) and 

(16) : 
 

BFKGDM =Φ+ΦΩ++Φ µµµ &&& )(  (15) 
µΦ= CY  (16) 

 
The multiplication of the equation (15) by TΦ  

on the left gives equation (17). 
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A matrix of eigenvectors Φ  is chosen as to 
obtain IMT =ΦΦ . Let χ  defined by equation (18) 
be the state vector of the modal state-space model 
represented by equations (19) and (20). 
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The order of this modal state-space model is 

m2 . A flexible modal model for the rotor is thus 
obtained, of a reasonable order. The rigid part of the 
system composed of the rotor and the AMBs has to 
be added in order to complete the model. The 
description of the rigid behaviour of the system 
depends on its geometry, the positions of the 
actuators and the positions of the sensors [10]. 

Any movement of a rigid rotor inside its AMBs 
can be represented as a combination of a translation 
movement and a tilting movement. Consider the 
system composed of a bar, two AMBs and the 
corresponding sensors.  

The bearings generate the forces 1F  and 2F . 
The displacements of the rotor on the detectors are 
called 1x  and 2x , while x  is the displacement of the 
center of gravity G . α  is the angle of rotation of the 
rotor during a tilting movement around G . 1bL , 2bL , 

1dL , 2dL  are respectively the distances from G  to 
the first and second bearings, and to the first and 
second detectors. Let J  be the axial moment of 
inertia of the rotor, and M  its mass. 

After writing down the mechanical equations, 
we obtain for the rigid behaviour the following state 
space model: 
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The final model for the rotor equipped with its 
magnetic bearings is the combination of two terms : 
the rigid part of the magnetically suspended body, 
and the expression of the flexible behaviour of the 
rotor. 
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Some other terms of the closed-loop are also 
taken into account to increase the accuracy of the 
model. A model for the amplifiers, anti-aliasing 
filters, detectors, smoothing filters, and of course the 
numerical controller are then included too. So, this 
augmented model represents as accurately as possible 
the behaviour of the system. 

In order to validate the modelling method we 
have built, we apply it to an air turbine machine. The 
fifty nodes that compose the FE model are specified. 
The structure obtained for the complete system is 
particularly adapted to the multi-objective control 
method we developed.  

 
MULTI-OBJECTIVE CONTROL 

The matrix inequalities that have been presented 
are not linear in decision variables if the closed loop 
system is considered. In order to perform a synthesis 
via convex optimisation, it is necessary to transform 
the initial problem. A combination of the different 
tools presented in this section leads to the synthesis 
algorithm given below. The 3 tools are the following: 
 
− The Youla parameterization gives specific 

properties to the system, 
− The observer-based structure allows to reduce 

the degree of the controller, 
− The optimisation of the Youla parameter is 

expressed as an LMI problem. 
 

Contrary to usual approaches, the proposed 
method allows to choose different Lyapunov 
functions for each objective without loosing 
convexity; this is a crucial point to reduce the 
conservatism. Indeed each objective can be 
considered independently.  

The set of all stabilizing controllers for P can be 
parameterized [11] as QJK ∗=  (see figure 2) where 
the Youla parameter Q  is any stable system. More 
precisely, if we consider a plant model Sys1. Suppose 
there exists matrices cK  and fK  of appropriate 
dimensions such that cBKA−  and CKA f−  are 
stable. Then the set of all stabilising controllers for 
Sys1 can be parameterized as QJK ∗= , where 

∞∈RHQ  and ([11]): 
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Any stabilising controller can be expressed as 

the interconnection of an observer-based structure 
and a Youla parameter Q . Suppose an initial 

controller has been designed using a classical mono 
objective method. Such a controller can then be 
expressed as QJK ∗=  with J  of minimum degree 
(i.e. the degree of P ). 

Finally the Youla parameterization gives a 
specific form to each channel state space 
representation of G  as follows in equation (23). 

 
 

FIGURE 2: Closed loop structure including Youla 
parameterization 
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The multi-objective control problem is now to 

find an output feedback Q  for the system G , such 
that the objectives listed before are satisfied. 
Consider the thi  objective ( 2H  or ∞H ), from iw  to 

iz  and the Lyapunov function X  partitioned into: 
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Matrix inequalities (4) and (6) to (8) applied to 

the closed loop system QG ∗  are non linear on the 
decision variables Q  and iX . They are therefore 
going to be transformed by a change of variables and 
congruence transformations. 
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Consider the following bijective change of 

variable: 
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We define: 
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The congruence transformations of the matrix 

inequalities lead to LMI formulation (see [6]). The 
∞H  performance can be expressed as follows, after 

pre and post multiply equation (4) by 
)( 11 IIMMdiag , (6) by )( 22 IMMdiag  and (7) by 

)( 2 IIMdiag , we obtain the LMIs (29) to (32). 
So we have shown that the multi-objective 

problem depends linearly on the variables 1R , 1S , 
1T , 2R , 2S , 2T , Y , 1γ , 2

2γ  and Q . 
 
ALGORITHM AND APPLICATION 
 The previous results lead to a multi-objective 
control design algorithm based on the Youla 
parameterization: 
 

− Initial synthesis: design of an initial controller 
using conventional techniques 

− Observer-based structure parameterization: we 
obtain the Youla parameterization with J  
described by (23). 

− Convex optimisation: choose the order of the 
Youla parameter Q  and solve the multi-
objective control problem using the LMIs (29) to 
(31) 

− Controller reconstruction: the final controller is 
obtained by interconnecting J  and Q : 

QJK ∗=  
We use a conventional controller (PID design) as 

initial controller. Once we have chosen the 
optimisation weithings, we obtain the following 
controller QJK ∗= : 
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FIGURE 3: Controller for axis 13 
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We obtain the following open-loop for the first 
axis on the turbine. 
 

F R F 1  ( C h a n n e l  2 / C h a n n e l  1 )  -  F R F 1  ( C h a n n e l  2 / C h a n n e l  1 )
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FIGURE 4: Bode diagram of the open loop for axis 1 
 

The controller obtained have been tested with 
uncertainties added on the rigid and on the flexible 
modes. The criterion on the 2H  norm of the closed 
loop transfer function helps reducing the effect of the 
unbalance, but the time simulations and experiments 
are better with a specific unbalance control algorithm, 
like AVR (see [12]).  
 In this particular case, the performance 
comparison of the controller obtained and the PID 
controller designed by a specialist is not amazing, but 
what is interesting in the approach proposed is the 
quality and reliability reached with the multi-
objective algorithm. If the constraints change, for 
example because of the gyroscopic effects, we only 
have to go through the two last steps of the algorithm. 
 
CONCLUSION 

The objective of this study was to apply a multi-
objective control algorithm to an AMB machine. We 
used the Youla parameterization and LMI 
formulation for the objectives. We first build a model 
of a 2-AMBs machine by considering separately the 
rigid and flexible behaviour of the machine. This 
model is reduced as much as possible using a modal 
description of the bending part. 

We then present the general multi-objective 
optimisation algorithm. Each step is based on matrix 
manipulations and convex optimization. Besides 
matrix manipulation are numerically well conditioned 
and convex optimization can be solved in polynomial 
time. So it leads to computationally tractable 
problems. 

This method offers advantages over existing 
methods. It allows to reduce the conservatism by 
using a particular Lyapunov function for each 
objective. It is not necessary to inverse the changes of 
variables. Note however that increasing the number 
of decision variables can turn to numerical problems 

when the plant order or the number of objectives is 
large. 

The optimization method have been applied to 
the model with specific constraints and weightings, 
and gave a controller validated on the machine. The 
results are not only satisfactory, but they also open up 
to various fields. Our objective is now to optimise the 
order of the Youla parameter Q  and apply gain 
scheduling techniques in order to adapt Q  to the 
change of rotational speed. 
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