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ABSTRACT 
    This paper presents an analytical approach to 
modeling the relationship between applied 
magnetomotive force and mechanical force produced 
for a non-laminated cylindrical magnetic actuator. The 
approach is based on dividing the actuator into elements 
according to the flux distribution inside the actuator, 
and finding the frequency-dependent reluctance of the 
flux paths of each element. An analytic model and its 
half order simplification are derived, both of which are 
explicitly dependent on actuator material and geometric 
properties. Performance predictions from both analytic 
models are compared with finite element analysis, 
demonstrating the accuracy of the models.     
 
 
1. INTRODUCTION 

 
Non-contact magnetic actuators can be of great benefit 
to many industrial applications. In many of these 
applications, the flotor (the levitated part) will not be 
composed of laminations, as this would be 
contradictory to the levitation’s purpose (e.g., sheet 
metal conveyance). In others, cost or strength concerns 
preclude the use of laminations in either the flotor or 
the stator (the electromagnet). For example, thrust 
magnetic bearings in rotating machinery rarely have a 
laminated construction. Faraday’s law dictates that 
eddy currents will appear in a non-laminated actuator 
whenever a changing current is applied. These eddy 
currents generate a magnetic field that opposes the 
change in field generated by the varying actuator coil 
current, causing a reduction in the electromagnetic 
force produced, and resulting a slower change in the 
force than that in the current.  As a result, eddy currents 
have a fundamental impact on the dynamic stiffness and 
servo bandwidth that can be attained by a magnetic 
suspension system. An accurate analytic model of the 

eddy current effect would be highly beneficial during 
the design stage to determine the impact of actuator 
geometric and material properties on suspension 
performance. For example, such knowledge could 
clearly be used in design optimization. 
 
Several studies have been done to develop analytic 
models for non-laminated magnetic actuators of 
different types. Zmood [1] used a one-dimensional eddy 
current formulation for laminated magnetic circuits 
described in [2] to model a non-laminated C type 
magnetic actuator having a large ratio of pole width to 
height. Zmood applied a one-term expansion of the 
formulation and derived a first order analytic model. 
Feeley [3] used a two-dimensional eddy current 
formulation for a long rectangular bar presented in [2] 
to model a non-laminated C type magnetic actuator 
with pole width and height of the same order of 
magnitude. After neglecting the summation term in the 
formulation, Feeley applied an ad hoc approximation 
that resulted in a half order analytic model. In both 
these papers, the authors assume as a matter of course 
that the profile of flux density in a cross section of the 
air gap is the same as that in the associated cross 
section of pole iron. This is a reasonable assumption for 
static analysis but not for harmonic because of eddy 
currents. Kucera and Ahrens [4] examined a non-
laminated cylindrical magnetic actuator. They divided 
the actuator into elementary geometric forms, and used 
the solution of the Maxwell’s equations for a semi-
infinite plate in approximating the flux distribution in 
each part. From this, they developed a generalized form 
of the flux equation similar to the one-dimensional eddy 
current formulation in [2], combined the various part 
models, and derived an analytic model. Since it was 
assumed that the air gap flux density had a uniform 
distribution that was independent of the frequency of 
the harmonic field, this model does not allow changes 
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in the spatial variation with frequency. Furthermore, a 
parameter in this analytic model must be identified 
from experimental data, as it does not correspond to any 
geometric or material property of the actuator. Thus, 
this result is not well suited to actuator design 
optimization.  
 
The non-laminated cylindrical magnetic actuator 
studied in this paper is composed of three parts, a stator, 
a flotor and a coil shown in Fig. 1. The actuator 
geometry is axisymmetric, as is the flux distribution 
inside the actuator. Fig. 2 displays the cross-section 
with all the dimensional notations. Throughout this 
paper, we will use a cylindrical coordinate system (r, z, 
ϕ ).  

 
 

Fig. 1: Exploded View of the Cylindrical Magnetic 
Actuator 

 

 
 

Fig. 2: The Cross Section of the Magnetic Actuator 
 

The goal of this paper is to determine the transfer 
function from applied magnetomotive force to 
mechanical force produced for a non-laminated 
cylindrical magnetic actuator such as shown in Fig. 1. 
Hysteresis, saturation, leakage, and fringing flux are 
beyond the scope, and only linear and isotropic 
materials are considered. The transfer function desired 
will be derived based on an extension of the 
conventional magnetic circuit theory [5]. 
 
2. ELEMENT EFFECTIVE RELUCTANCES 

 
2.1 Reluctance for a Solid Iron in a Harmonic Field 

Magnetic circuit theory [5] has been used quite 
successfully in the preliminary design of many 
electromagnetic devices. In this approach, the 
reluctance of a magnetic circuit for a static magnetic 
field is defined by  

φ
FR =                                   (1) 

where F=NI is the magnetomotive force, N is the 
number of turns of the primary coil, I is the current 
magnitude, and φ  is the flux in the circuit. This 
formulation may also be employed for a harmonic field 
in well-laminated iron. If the materials used are all 
linear, then the reluctance of a certain element in the 
circuit possessing a uniform cross-sectional area normal 
to the flux can be expressed as  

A
lR

r 0µµ
=                               (2) 

where l is the length of the element in the direction of 
the flux, rµ is the relative permeability, 0µ  is the 
permeability of free space, and A is the cross sectional 
area.  
 
As mentioned in Section 1, we wish to employ 
magnetic circuit theory to develop an analytic model for 
a non-laminated cylindrical magnetic actuator. 
However, Equation (2) is not applicable in this context, 
as it does not take into account eddy current effects. In 
this section, we employ an example to illustrate how the 
definition in (1) can be extended to non-laminated iron 
with a harmonic magnetic field, and introduce a new 
notion of effective permeability that may be used to 
calculate the effective reluctance of the iron. 

 
 

Fig. 3: The Solid Iron Core 
 

Consider a solid iron core shown in Fig. 3 with a 
uniform circular cross section. A coil with N turns is 
evenly wound on the core. On the surface of the core, 
the field strength is lsNIsH sf /)()( =  with 

Ninth International Symposium on Magnetic Bearings, August 3-6, 2004, Lexington, Kentucky, USA



  

Wl 4= , and I(s) being the Laplace transform of the ac 
current i(t). According to Lammeraner and Stafl [6], the 
flux density on each cross section is 

)2/(
)(

)(),(
0

0
0 DI

rI
sHrsB sfr α

αµµ=          (3) 

)(0 ⋅I  is the zero order modified Bessel function of first 
kind;  

  0µσµα rs=                            (4) 
 whereσ is the electrical conductivity of the iron; and s 
is the complex frequency variable . 
 
The flux in the iron core can be expressed as, 

∫ ⋅=
2/ 

0
0

0
0 2

)2/(
)()( )(

D

r rdr
DI

rI
l

sNIs π
α

αµµφ    (5) 

From (5), following the conventional definition in (1), 
we can define the reluctance of the iron core in a 
harmonic field to be 
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  (6) 
This frequency-dependent reluctance effR  is called the 
effective reluctance of the iron core. 
 
Equation (3) shows that flux distribution inside the 
solid core is not uniform, and the spatial change of the 
distribution is due to the effect of eddy currents. Here, 
we reinterpret (3) as 

)(),(),( sHrsrsB sfeffµ=                 (7) 

with           
)2/(

)(
),(

0

0
0 DI

rI
rs reff α

αµµµ =              (8) 

Equation (7) interprets the spatial change of the flux 
distribution as being due to a spatial change of the 
material permeability. In this paper, the spatially 
changing permeability effµ  is called the effective 
permeability. The definition of effective permeability in 
(8) is different from that provided elsewhere in the 
literature [5]. effµ  can be used to calculated effR  

defined in (6). Since effµ is a spatial function, the 
effective reluctance of the core must be found by a 
limiting approach. 
 
2.2 A Division of the Non-laminated Cylindrical 
Magnetic Actuator Geometry  
 

 

As to motivate the approach taken, we will start our 
analysis by first considering some typical FEA results 
such as the one given in Fig. 4. These results show the 
following phenomena: (1) flux distributes mainly in a 
surface layer in the iron; the higher the frequency, the 
thinner this surface layer; (2) when flux leaves or enters 
the iron, there is a transition region near the surface 
where flux lines change direction; and (3) when the 
frequency is sufficiently high, the flux lines are either 
parallel to the r direction, or to the z-axis. This last 
phenomenon suggests that the actuator geometry can be 
divided into several elements, in each of which the flux 
distribution is only one-dimensional. Thus, modeling of 
an axisymmetric non-laminated magnetic actuator, 
which is normally considered as a two-dimensional 
problem, may be decomposed into several one-
dimensional problems that are much easier to examine. 
That is, we may formulate the analysis problem like 
magnetic circuit theory [5]. Finally we draw the 
reader’s attention to Fig. 5, which shows that the flux 
density in the air gap is not uniform at relatively low 
frequencies, and that its spatial variation changes with 
frequency and becomes quite significant at high 
frequency. For reasonable accuracy, it is necessary to 
consider this non-uniformity of air gap flux density in 
the modeling process 
 

 
 

Fig. 4: The Harmonic Field at 50Hz 
 

 
 

Fig. 5: The Magnitude of the Normal Flux Density in 
the Air Gap 
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Based on the directions of the flux lines and for the 
purpose of taking into account the non-uniformity of 
flux density in the air gap, the actuator geometry is 
divided into six elements as illustrated in Fig. 6. Given 
the simple flux distribution in each element, one can 
derive an effective permeability effµ  from classic 
electromagnetic theory [7], and use it to calculate the 
effective reluctance for each element.  

 

 
 

Fig. 6: The Division of the Geometry of the Magnetic 
Actuator 

 
2.3 The Effective Reluctance of Each Element 

 
For each element, we used a reluctance network model 
such as the one shown in Fig. 7 to find the effective 
reluctance. The effective reluctances for all the six 
elements are summarize in Table 1. Since they contain 
transcendental functions such as modified Bessel and 
hyperbolic tangential functions, which will not be 
suitable for design optimization or control purpose, 
simplification was carried out for each original 
effective reluctance. All the simplified reluctances are 
also given in Table 1.  
 

 
 

Fig. 7: The Reluctance Network Model for Element 1 
 
3. ACTUATOR TRANSFER FUNCTION 
  
The total effective reluctance of the actuator magnetic 
circuit may be calculated from the series 
interconnection of the elements as found in the previous 
section 

∑
=

=
6

1i
iRR                               (9) 

Hence, the transfer function from current to air gap flux 
is  

∑
=

== 6

1i
i

p

g

R

N
R
N

I
φ

                      (10) 

where N is the number of turns of the coil. Using 
Maxwell Stress Tensor [8], we found the transfer 
function from current to force: 
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         (11) 

pI  is the Laplace Transform of the perturbation current 

)(ti p , and ∑
=

=
6

1

0

i
ibb RNIφ  where bI  is the bias dc 

current, 0
iR  is the static value of iR  with 

6,,2,1 L=i .  
 
From the approximations chosen for the effective 
reluctances of the six elements summarized in Table 1, 
it is easy to see from the table that all the 
approximations are of the form  

scRR iii += 0~
                          (12) 

where iR~  is the approximation of the effective 

reluctance iR  of element i; the coefficient of the half 

order term ic  is given in Table 1. Therefore, the total 
effective reluctance of the actuator R may be 
approximated as 

scRRR
i

i ⋅+==∑
=

0
6

1

~~
                  (13) 

where R~  is the approximation of the total effective 
reluctance R  given in (9). Substitution of this 
approximation for the total effective reluctance into 
(10) and (11) yields a simplified model for the transfer 
functions of interest 

scR
N

sI
s

p

g
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=
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)(φ

               (14) 

 

scR
N

AAsI
sF b

p

p

⋅+





+⋅=

0
210

11
)(
)(

µ
φ

  (15) 

 
The models of (92) and (93) are called fractional order 
systems [9]. 
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Table 1: Effective Reluctances and Their Approximations 
 

 
Effective Reluctance 
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)(~ sRi
 

1 

 

)(2
)(

11110

1101

rIr
rIg

απµ
αα  

 

s
r

g

r 00
2

1 4
1

µµ
σ

πµπ
+  

2 

 

)tanh(2
)/ln(

10

12

d
rr

r α
α

µπµ
 

 

+
01

12

2
)/ln(

µµπ rd
rr srr

r 0

12

2
)/ln(

µµ
σ

π
 

3 

⋅
202 r

g
πµ

 

)()()()(
)]()()()([

311211311211

3112103112101

rKrIrIrK
rIrKrKrI

αααα
ααααα

−
+

 

)( 2
2

2
30 rr
g

−πµ
+ 

s
rr

rrrr
r
rr

r 0
22

2
2

3

4
2

2
3

2
2

4
3

2

34
3

)(2

)
2
12

2
3log2(

µµ
σ

π −

−+−
 

 

4 

 

⋅
20

2

2 r
d

r µπµ
 

)()()()(
)]()()()([

31213121

31203120

rKrIrIrK
rIrKrKrI

αααα
ααααα

−
+

 

 

)( 2
2

2
30

2

rr
d

r −µπµ
+ s

r
d

r 02

2

2 µµ
σ

π
 

5 

 

)tanh(2
)/ln(

30

12

d
rr

r α
α

µπµ
 

 
03

12

2
)/ln(

µµπ rd
rr

+ srr

r 0

12

2
)/ln(

µµ
σ

π
 

6 

 

)(
)(

2 11

10

01

2

rI
rI

r
d

r α
αα

µµπ
 

 
0

2
1

2

µµπ rr
d

+ s
r

d

r 01

2

2 µµ
σ

π
 

 
Equation (15) may be rewritten to show its dependence 
on electrical conductivity and relative permeability: 
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where coefficients 321  and , , βββ are independent of 

r and µσ  and are determined by actuator geometry 

only. The DC gain of (16) is 2
32

2
1 )( rr µββµβ + , 
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recasting of (15) is  
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where coefficients 654  and , , βββ  are independent of 
the air gap length g. The DC gain of (17) is 
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2
654 )( gβββ + , the bandwidth is 2

65 )( gββλ +⋅ , 

and the gain-bandwidth is 4λβ .  As this discussion 
indicates, the bandwidth of an actuator increases with 
relative permeability at a rate that is no greater than 
linear while it increases in a quadratic fashion with 
respect to air gap. However, actuator gain-bandwidth is 
independent of air gap length.  
 
4. COMPARISON WITH FEA 
 
In this section, we compare the frequency responses of 
the complete analytic model (11) and the simplified 
analytic model (15) to that generated by finite element 
analysis for an actuator whose parameters are given 
below. 

Table 2: Actuator Parameters 
 

Parameters Value 

rµ  1000 
σ  6102× Siemens/m 

1r  25mm 

2r  35mm 

3r  43mm 

1d  15mm 

2d  20mm 

3d  15mm 
N 738 
g 40mil 

 
Fig. 8 demonstrates that the frequency responses of the 
two analytic models are very close to that of FEA  
 
5. CONCLUSION 
 
In this paper, an analytic model for a non-laminated 
cylindrical magnetic actuator including eddy current 
effects was developed. Due to the complexity of this 
complete analytic model, a simplified model was given. 
Both the complete and the simplified models are 
explicitly dependent on the actuator material and 
geometric properties. Thus, the influence of each of the 
actuator properties on its performance can be easily 
calculated. Comparison of the frequency responses of 
the two analytic models to that resulting from FEA 
demonstrates good accuracy. The analytical modeling 
approach employed in this paper is not limited to 
cylindrical actuators, and can be applied to non-
laminated magnetic actuators of other geometries, such 
as C and E types.  
 

 
 

Fig. 8: A Model Comparison 
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