
 
 
 
 
 
 
 

DIAGNOSTIC OF ROTATING MACHINERY WITH MAGNETIC 
BEARINGS & RIGID ROTOR 

 
Zdzisław Gosiewski 

Aviation Institute 
02 -256 Warsaw, Al. Krakowska 110/114, POLAND 

gosiewski@wmt.wat.edu.pl 
 

 
ABSTRACT 

A magnetic suspension system for bearing single 
axis consists of displacement and two current sensors, 
two opposite coils, two amplifiers, and suspended mass. 
Such unstable open-loop magnetic bearing system is 
stabilized by a microprocessor control system. The 
proposed diagnostic system should detect deterioration 
or failure of above mentioned system and indicate the 
failure component. 

A diagnostic algorithm consists of four tests. 1) 
Test of measurement system which we are using the 
observer bank in. It allows us to detect any failure in the 
system. 2) Test which recognizes whether the failure is 
in measurement system or in other components. Having 
a failure is in measurement system the previous test 
indicates which sensor is failure. 3) Identification of 
state and control matrices in their physical form. 
Identification of open-loop matrices is realized by 
Markov parameters model detected by the ERA 
algorithm. 4) Localization of failure by inspection of 
state and control matrices. 
 
INTRODUCTION 

A rotating rotor has high kinetic energy which is 
approximately proportional to its mass and to square of 
the angular velocity. A such energy during emergency, 
for example after shut-up of the electric power supply 
to the magnetic bearings, can destroy all rotating 
machinery and be hazardous for people. To avoid such 
case the backup bearings are build-in and the additional 
source of power (usually accumulator) is joined to the 
energy power system.  

Beside the emergency case there are other faults as 
a result of exploitation and of local damages. Such 
faults do not cause the catastrophic shut-up but 
gradually deteriorate performance of the system, what 
can finally lead to its damage. In the paper we consider 
detection an isolation of such faults since they are 
important in the case of the bearing system.  

A fault detection and isolation in complex and 
controlled systems is considered in many papers and 
books, for example, in [1], [2]. Methods of fault 
detection can be divided into two groups [2]: methods 
basing on the analysis of process signals and methods 
basing on the analysis of connections among process 
signals.  

In the first group the statistic or spectral analysis of 
signal is carried out to detect faults. These methods are 
simple so we have not to know the process model. On 
the second hand the quantity of diagnostic information 
in the single signal is small. Moreover, the information 
is unreliable because of many causes which influence 
on the process signal. 

In the second group of methods we use quantitative 
or qualitative models of the systems describing 
connections among process signals. This approach is 
particularly useful in the case of multi-inputs and multi-
outputs control systems (MIMO). The most popular are 
analytical models. Differences between signals from 
analytical model and measured signals are called the 
residua. To generate residua we use linear and nonlinear 
physics equations, state observer or Kalman filter 
models of process, parity equations of input-output 
models, or identified models.  

A linearized analytical model of the magnetic 
bearing is available. Moreover, the identification 
method of magnetic bearing parameters was described 
in the [3]. The identification method of the open-loop 
system parameters will be used as a part of the 
diagnostic system. Another part will be devoted 
diagnostics of sensors. The tests which allow isolate 
different faults will be described. Due to the digital 
microprocessors and digital controllers have built-in 
diagnostic tests we omit their diagnostics.  

 
PLANT MODEL AND CONTROL LAW 

The dynamic equations of particular coils should 
be coupled with the model suspended rotor mass to 

Ninth International Symposium on Magnetic Bearings, August 3-6, 2004, Lexington, Kentucky, USA HOME



implement the voltage control scheme. Finally, for each 
magnetic bearing axis we have the following model of 
the open-loop system [4]:  
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Tand: TxT-rotor displacement from the point located at the 
bearing center to the operation point,  uT – coil TvoltagesT, 
i – coil currents, and  v - coefficients designed from 
system parameters. 

Since dx/dt can be simply estimated from rotor 
displacement x the state feedback control law is as 
follows:  
         = −u Fx . T(3) 

 
Different control methods can be applied to 

implement the above state feedback control laws. In [5] 
the pole-placement method was used to obtain the 
controller gain matrix F. The LQR method is described 
for example in [6]. The deadbeat predictive control 
method [7] can also be used to obtain the gain matrix.  
 
FAULT LIST 

We assume that each of the axes in the single radial 
magnetic bearing is controlled independently and the 
rotor mass is reduced to the magnetic bearing plane. 
The plant consists of two electromagnetic coils, two 
amplifiers, and rotor as a point mass. The measurement 
system has a displacement sensor and two sensors of 
the coils currents. We will limit the discrimination of 
the faults to this parts of the control system. In such 
case the list of faults is as in Tab.1, where faults are 
denoted by fBk B, for k=1÷8. 

As faults we can consider the external excitations: 
rotor unbalance, displacement sensor’s run-out,  
denoted as fBk B, for k=9, 10. These faults can be isolated 
by identification method [4]. 

We can establish values of above faults fBk B for which 
the diagnostic system generates the following actions: 
warning signal, alarm signal, counteraction to the 

external excitations, system reconfiguration, and the 
others. 
Tab.1. List of faults for single axis of magnetic 
bearings  

fBk B Discription of faults 

1f  Fault of displacement sensor 

2f  Fault of 1 coil current sensor  

3f  Fault of 2 coil current sensor 

4f  Fault of 1 amplifier 

5f  Fault of 2 amplifier 

6f  Rotor mass change 

7f  Fault of 1 coil 

8f  Fault of 2 coil 

9f  Unbalance 

10f  Displacement sensor run-out  

 
Profoundness of diagnostics depends on the needs 

of a user. For example, when we have found an 
amplifier is failed we can need to isolate failure deeper 
inside the amplifier. Since amplifier is a complex 
electronic device in the place of faults fB3 B, fB4B we have 
many other faults connected with different components 
of the amplifier.  

 
FAULT MODELS 

The faults  change the model parameters from their 
nominal values as follows:  

 
,     ,    .= + ∆ = + ∆ = + ∆c c c c c cA A A B B B C C C      (4) 

 
Analyzing the state and measurement equations we 

can notice that in our case the information about faults 
f B1 B, fB2B, fB3 B is in matrix ∆C, about faults fB4B, fB5 B, in matrix 
∆BBcB, and about faults fB6 B, fB7B, f B8B in matrix ∆ABcB. Faults fB9 B, 
f B10B are connected with unbalance w(t), and sensor run-
out pBr B(t), respectively. In the correctly working system 
those external excitations should be reduced, and they 
are considered as faults. Taking into account the model 
with faults we have: 
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Output vector y(k)  can be expressed as a function 

of vectors: control u(k), unbalance ( )kw , and sensor 

runout ( ) r kp
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where the first component describes the transient signal, 
while: 
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are Markov parameters of: the system, external 
excitations, and signal run-out.  

To design the state observer we add and subtract 
the component ( )tGy  to the first equation in (5): 
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where G is the observer gain matrix. 
We assume that control signal ( )ku  is a sum of 

persistent pseudo-random signal ( )kr and of feedback 

signal ( )f ku  as follows: 
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Introducing equations (8) into equations (7) we 

obtain the observer/controller model of the closed-loop 
system in the form:  
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To reduce the estimation time we introduce the 

deadbeat observer where matrix G, fulfills the 
condition: ( ) ( )i i= + =A A GC 0 ,   for: i≥p. 

In this case the output signal can be expressed by 
reduced number of Markov parameters of 
observer/controller model:  
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      Identified Markov parameters (particularly first of 
them) will be used in diagnostic tests. 
 
ISOLATION OF FAILED SENSOR 

Omitting external excitations we have the model of 
the system with faults:  
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where: ( )ky  is real measured signal and ( ) ,F ky  is 
signal generated by sensor faults.  

To isolate sensor fault we use the method IFD – 
Instrument Fault Detection [1] with residua generated 
by the observer bank. We denote that ( )ˆ kx is estimated 
state vector, so the estimation error is: 
( ) ( ) ( )ˆk k k= −ε x x . For observer gain matrix L it leads 

to the following estimation error equation: 
 

[ ] [ F= + ∆ ∆ ∆ −ε A - LC ε A - L C]x + Bu Ly& .           (12) 
 

It means that all faults: ∆A, ∆B, ∆C influence on 
the estimation error. Such approach allows to detect 
faults in the system but not to isolate them. The 
situation is much simple if only the sensor is failed. 
Then we can isolate such sensor by the observer bank. 
So we have to design a test to separate the diagnostics 
of measurement system from the other faults. 
Identification of Markov parameters will be used to 
separate faults ∆C from ∆A, ∆B.  
 
DIAGNOSTIC TABLES  

A diagnostic table written in the binary matrix form 
shows dependences among diagnostic signals and 
different faults. The table enables the isolation of 
particular faults. In the binary matrix the columns are 
connected with faults, while rows with diagnostic 
signals. When a fault influences on a diagnostic signal 
we put value true (integer 1) in the proper place of the 
matrix. In opposite case we put  false (zero).  

The residua from the observer bank and the residua 
obtained during identification of the open-loop system 
parameters will be diagnostic signals. First three 
diagnostic signals are generated by the observer bank of 
the measurement system:  
          ( ) ( ) ( ) ( ) ( ) ( )1 1 2 2 3 3,    ,    .s t r t s t r t s t r t= = =   (13) 
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where r(t) are signals designed to isolate faults of 
particular sensors. Unfortunately, if there are faults in 
other components of system they influence above 
diagnostic signals. Therefore, these signals are 
functions of faults connected with sensors, amplifiers 
and coils as follows:  
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1 1 1 4 5 6 7 8

2 2 2 4 5 6 7 8
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The next diagnostic signals are obtained from 

identification procedure. Using the ERA algorithm we 
calculate real matrices of the open-loop system. They 
are compared with nominal matrices by introduction of 
array division in the form:  
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Array division is a division of respective matrices 
elements. Elements of matrices ABc B, BBc B are shown in 
equation (2). The elements of matrices ABce B, BBce B are 
estimated in identification procedure. So, we have the 
following matrix indicators of faults: 
  

1 21 22

31 41

32 42

0 1 0 0
0

0 0
0 0

p p p
p

p p

p p

ν ν ν
ν ν
ν ν

⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− −
⎢ ⎥

−⎢ ⎥⎣ ⎦

A ,
51

52

0 0
0 0

0
0

p
p

p

ν
ν

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

B ,

(16) 
Analyzing physical parameters of the system we 

can notice that elements of above matrices are 
generated by different faults according to the following 
relations:  
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The information about the same faults is contained 

in a few diagnostic signals. Thus, we can reduce the list 
of diagnostic signals as follows:  
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As it results from identification method these 

functions are valid for normally working sensors. In 
real situation we have to take into account the failure of 

sensors. Then, above diagnostic signals are  functions of 
the following faults:  
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The full binary matrix has the form shown in the 

Tab. 2. The matrix is fulfilled by logic values 1 (true). 
We omitted and replaced by blank the logic values 0 
(false) to make the table clearer. As a limit for values 
true we assumed 5% changes in the physical parameters 
which lead to system instability. 

 
Tab.2. Binary diagnostic matrix for single axis of magnetic 
bearing. 

S/F 1f  2f  3f  4f  5f  6f  7f  8f  
sB1B 1   1 1 1 1 1 
sB2B  1  1 1 1 1 1 
sB3B   1 1 1 1 1 1 
sB4B 1 1 1 1     
sB5B 1 1 1  1    
sB6B 1 1 1   1 1 1 
sB7B 1 1 1    1  
sB8B 1 1 1     1 

 
As an example we consider the electromagnetic 

coils. The coil fault can be a result of short circuit 
between parts of coils. It reduces the number of active 
coils. As a result it changes the coefficient of 
displacement stiffness, coefficient of current stiffness, 
inductivity, and resistance. During a computer 
simulation we can find the limit number of failed coils 
causing the closed-loop system instability (for fixed 
control law). If total number of failed coils cross the 5% 
of the limit number then corresponding values of 
elements in matrix indicators should show appearance 
of the fault. 

According to Gertler [2] the faults are detectable 
when all columns of binary matrix are different. If two 
columns differ only in one row the faults connected 
with these columns are weakly isolated. When all 
columns differ in two rows all faults are strongly 
isolated. It takes place when binary matrix is square and 
diagonal. In that case we are able to isolate multiple 
faults. Analyzing the Table 2 we can notice that all 
faults are strongly isolated except the fB6B fault because 
rotor mass change is weakly isolated.  

 
DIAGNOSTIC SYSTEM 

From the binary matrix (Tab.2) results that test 
of measurement system by observer bank is sufficient to 
detect faults in the system. A set of diagnostic signals 
sB1B, sB2B, sB3 B reacts to all faults. To isolate fault we have to 
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carry out the other tests. The isolation of all faults is 
available by the following tests.  
1. Measurement system test by the observer bank. 
2. Test separating faults of measurement system from 

faults in plant or actuators.  
3. Identification of physical state matrix and physical 

control matrix.  
4. The isolation of the faults. 

TAd.1.T Residua of measurement signals are 
generated on-line by the observer bank realized beside 
control loop. It can be realized by a microprocessor 
using parallel the measurement and control signals. 
Since that test is realized on-line it allows to emergency 
shut-down of the rotating machinery in the case of fast 
progression of the failure. The method of observer bank 
was checked in many industrial applications [1,2].   

Ad.2. It is desired to have a test in which faults of 
the measurement system are distinguished from others 
faults. The test allows to avoid the identification 
procedure which consumes microprocessor time. In the 
case of sensor fault this test stops further tests. The 
previous test indicates which sensor is failed.  

To check if the fault is in measurement system we 
can use observer/controller Markov parameters, 
particularly the first one which has the following form:  

 

1

−⎡ ⎤
= = ⎢ ⎥−⎣ ⎦

CB CG
Y CB

FB FG
. (22) 

 
We can see that the diagnostic signal can be designed 
basing on elements of submatrix CG where observer 
gain matrix G is constant. Faults in measurement 
system cause changes in matrix C. Submatrix CG  has 
dimension 3×3. If matrix C has a similar form to 
diagonal then the best diagnostic signals can be 
designed from diagonal elements of the submatrix CG .  

To identify Markov parameters we are forced to 
excite the closed-loop system by additional signal r(t). 
Such test should be realized in an off-line regime. It 
means that the technological process of rotating 
machinery shoud be stopped to carry out test. 
Therefore, we can not resign from the observer bank 
because it does not disturb the technological process. 

Ad.3. Above remarks apply to identification 
procedure of open-loop physical parameters. After 
identification we obtain matrix indicators. As it was 
mentioned the diagnostic signals are calculated from 
elements of the indicators. This test should be also 
realized in off-line regime.   

Ad. 4. After above tests we are able to indicate 
faults. It can be noticed that after first two tests the 
binary matrix (Tab. 2) may be split into two simpler 
matrices (Tab.3, 4).  

Tab.3. Diagnostic binary table for fault in 
measurement system. 

S/F 
1f  2f  3f  

B

1s B 

1   

2s   1  

3s    1 

 
Tab. 4. Diagnostic binary table for fault subset of 
plant and actuators. 

S/F 
4f  5f  6f  7f  8f  

4s  1     

5s   1    

6s    1 1 1 

7s     1  

8s      1 

 
These matrices are almost diagonal and faults are 
strongly isolated with exception of rotor mass change.  
 
COMPUTER SIMULATION AND CONCLUSSION 

The following nominal parameters were used in 
computer simulation: NB1B=NB2B=100 - coil number in 
upper and lower electromagnetic coils, respectively, 
RB1 B=RB2B=1.5 Ω – coil resistance, LBs1 B=LBs2 B=0.043 H – 
leakage inductivity, iBoB=2 A – operation point current, 
ABp1 B=ABp2B=400*10P

-6
P mP

2
P – pole cross section area, 

µ=4π*10P

-7
P –  magnetic permeability, kBw1 B= kBw2 B=30 – 

amplifier gain.  
The simulation model was designed in  Matlab-

Simulink software. The controller was calculated for a 
linearized model. The controller was joined to the full 
nonlinear model including that part of system dynamics 
which was earlier omitted. For example the real model 
of amplifiers is in the form:  

1
1

1 1
w

w
w

k
G

T s
=

+
,   2

2
2 1

w
w

w

k
G

T s
=

+
 (23) 

 In opposite to the linear model the nonlinear 
model is non-minimal phased. It is caused by delay in 
the system. The delay is caused by restriction of control 
signals. The transient process of the closed-loop system 
is similar in linear and nonlinear models (Fig. 1). 

The nonlinear model was used for the further 
simulation. The simulation results are as follows: 

1. System is sensitive for amplifier dynamics. It 
becomes unstable for: TBw1 B>0.0005 s, TBw2 B>0.0005. It 
means that amplifier band-pass should cross 2000 
Hz. The system is also unstable for: kBw1 B=<12.4, 
kBw2 B=<12.4.  
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2. Coils failure in the form of active coil reduction 
cause changes in some elements of the state matrix. 
Under external load the coil faults influence in 
differ way on system stability. We assumed that 
system is unstable if one of electromagnets has all 
coils failed.  

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
Fig.1. Answer to step input generated by linear model 
(uppert plot) and by nonlinear model (lower plot).  
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Rys.2. Step answers obtained from local observers 
gathered in observer bank. The observers are designed in 
order on signals: mass displacement, currents in upper 
coil and current in lower coil. Answers from different 
observers cover each others. 
3. System is sensitive on sensors faults. The system is 

unstable if coefficient gain of displacement sensor 
is below 0.53 of nominal value. The system is even 
more sensitive in case of current sensors fault 

becoming unstable for sensor coefficient gain less 
than 0,72 of nominal value.  

4. System is unstable for 60% loss of rotor mass. 
In the next step the local observers were built. The 

every observer was driven by signal from one sensor. 
Output signals of closed loop system were calculated on 
basis of estimated states produced by particular 
observers. One of them is the displacement sensor. The 
transient process noticed by local observes is shown in 
Fig. 2.  

After simulation the following conclusions can be 
made: 
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1. If bearings are not loaded then all three local 
observers repeated steady state values of the 
measured signals. 

2.  External forces, like gravity force, strongly 
influence on output signals of the observers. Their 
causes bias which should be compensated by the 
diagnostic system. 
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3. Due to fault in the system the measured and 
estimated signals sufficiently differ activating the 
decision function in the diagnostic system. 
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