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ABSTRACT 
Gyroscopic effects of a flywheel rotor supported by 

active magnetic bearings greatly influence system stability. 
Effectively damping the rotor nutation is a challenge for the 
controller designs of the system. To improve rotational 
speeds of the rotor, how a PD controller and phase lag 
factors changed the dynamics and the stability of the rotor 
in operation was studied. With the phase lag factors in the 
closed-loop system, effects of the cross feedback control on 
the nutation stability were studied too. Some simulation 
results and experiment results are provided. It is shown that 
the phase lag factors and the PD controller greatly influence 
the nutation frequency value of the closed-loop system. The 
real damping of the nutation becomes poor and the nutation 
frequency increases to near a double-synchronous 
frequency when the rotor runs at high rotational speeds. 
Sensor runout signals can excite the nutation vibration and 
make the rotor unstable. In controller designs, the nutation 
resonance peak of the closed-loop system near 
double-synchronous frequency should be avoided. At the 
same time, the sensor runout signals should be restrained. 
 
INTRODUCTION 

 Magnetic bearings have been utilized in a wide 
variety of applications such as high speed trains, centrifugal 
compressors, grinding machines, reaction and gyroscopic 
wheels for attitude control of spacecraft, and energy storage 
wheels, since they have unique advantages of non-contact, 
elimination of lubrication, low power loss, automatic 
balancing capability, and controllability of bearing 
dynamics characteristics [1,2,3,4,5]. 

The flywheel system mentioned in this paper is to be 
used in spacecraft and replace a system supported by 
conventional ball bearings for attitude control. The system 
can prevent the harmful disturbance comes from ball 
bearings due to residual imbalance or bearing 
imperfections. 

Magnetic bearings are open-loop unstable which 
means closed-loop control is necessary for stable operation. 
Usually, such classical feedback control techniques as PD or 
PID are used. Of course, more complete control methods 
should be applied according to practical needs. For 
examples, the cross feedback control was used to stabilize 
the flywheel rotor in this application. 

When an elastically supported rotor runs at a high 
rotational speed, the ratio of its nutation frequency to the 
rotational frequency is near its polar-to-transverse inertia 
ratio because of gyroscopic effects. The gyroscopic effects 
of the flywheel rotor greatly influence the system stability.  
Effectively damping the rotor nutation is a challenge for the 
controller designs of the system, and poor nutation damping 
will cause the rotor to be unstable at high rotational speeds. 

To improve the rotational speed of the rotor, how a PD 
controller and phase lag factors change the dynamics and 
the stability of the rotor in operation was studied. With the 
phase lag factors in the closed-loop system, the effects of 
the cross feedback control on the nutation stability were 
studied too. Some simulation results and experiment results 
are provided. It is shown that the phase lag factors and the 
PD controller greatly influence the nutation frequency value 
of the closed-loop system. The real damping of the nutation 
becomes poor and the nutation frequency increases to near a 
double-synchronous frequency when the rotor runs at a high 
rotational speed. At the same time, sensor runout [6] signals 
can excite nutation vibrations of the rotor and make it 
unstable. In controller designs, the nutation of the 
closed-loop system and the sensor runout signals should be 
considered carefully to avoid unstable vibrations. 

 
MODEL 

Major parameters of the flywheel system are given in 
Table 1.  

TABLE 1 Momentum wheel data 

Item Note 

Bearing 5 DOF AMBs 
Angular momentum 100 kg·m2/s 
Rotation speed 20 000 r/min 
Mass 13 kg 
Inertial moment 0.065 kg·m2 
Power consumption 50 W 

For the flywheel system, the axial direction of the 
rotor is assumed to be decoupled with the radial directions 
[1]. So the positions of the axial directions can be controlled 
by conventional PID controllers, this paper only models the 
rotor in radial directions and analyzes its dynamics behavior. 
The simple structure of the system is shown in Figure 1. 
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FIGURE 1: Simple structure of the flywheel system. 

 
To simplify the problem, the following assumptions 

are made: 
1) The magnetic force linearization condition is satisfied 
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[1]. 
2) A rigid body model of the rotor is used to discuss the 

behavior of the rotor at different rotational speeds. 
3) For the radial AMBs, isotropic suspension is assumed. 
4) The rotor is symmetrical about all its principal axes 

(x-axis, y-axis and z-axis). 
The rotor’s dynamics equations are established based 

on the assumptions above. 
Furthermore, the phase lag factors in the closed-loop 

system have to be considered in actual analysis of the 
system behavior. They include several aspects as follows:  
1) Delay of magnetic forces [1] 
2) Delay of sampling and holding 
3) Delay of amplifiers 
4) Delay of the eddy-current sensors 
5) Delay of the notch filters in the controllers 

The delay factors are finally simplified as a low-pass 
filter—1/ (Ts+1) (T is set to 0.0005 s). 
 
DYNAMICS ANALYSIS 

Some necessary symbol definitions are given as 
follows: 

Jp inertial moment of the rotor about the z-axis 
Jd inertial moment of the rotor about the x-axis or the 

y-axis 
i imaginary number 
m mass of the rotor 
ω rotational speed of the rotor 
l distance between the two radial AMBs 
k stiffness of the AMBs’ suspension 
D differentiator coefficient 
kc  displacement cross feedback parameter 
kv velocity cross feedback parameter 
x displacement along the x direction 
y displacement along the y direction 
The coordinate of the rotor is illustrated in figure 1. 

For this model, the rotor’s translational and angular modes 
are uncoupled, and the basic behavior is easier to be 
discussed. 

1. ELASTIC SUSPENSION 
First, the rigid rotor with the same elastic suspension 

at the two radial AMBs was studied as the basis of 
subsequent discussions. The motion equations of the rotor 
are given as follows [7, 8]: 

05.0 2 =++
•••

αβωα klJJ pd  (1) 

05.0 2 =+−
•••

βαωβ klJJ pd  (2) 

02 =+
••

kxxm r  (3) 

02 =+
••

kyym r  (4) 
The solution of the equations shows that the nutation 

frequency ωn increases with the rotational speed ω(when ω 
tends to infinite, ωn will be (Jp/Jd) ω. The value of Jp to Jd is 
about 1.6 here) whereas the precession frequency ωp 
decreases (when ω tends to infinite, ωp will be zero). When 
the stiffness of the suspension is 0.2 N/um, the 
eigenfrequencies corresponding to the nutation and the 
precession in function of the rotational speed is shown in 
Figure 2. 

It is seen that the ratio of the inertial moments is a 
determining factor of the nutation frequency. 

Now, with the low-pass filter in the proportional  

 
FIGURE 2: eigenfrequencies corresponding to the nutation 

and the precession in function of the rotational speed. 
 

feedback, Equation (1) and (2) become as follows: 

0)()(5.0 2 =−++ ∫
+∞

∞−

•••

ττταβωα dtFklJJ ilterpd
 （5） 

0)()(5.0 2 =−+− ∫
+∞

∞−

•••

τττβαωβ dtFklJJ ilterpd
 （6） 

From the above equations, the following equation can 
be gotten: 

2

( ) ( )

0.5 ( ( ) ( )) ( ) 0

d p

ilter

J i J i i

kl i F t d

α β ω α β

α τ β τ τ τ

•• •• • •

+∞

−∞

+ − + +

+ − =∫

 （7） 

Defining φ=α+iβ, the following equation can be 
derived from (7): 

0)()(5.0 2
0 =−+− ∫

+∞

∞−

•••

τττϕϕωϕ dtFkliJJ ilterpd
 （8） 

Taking the Laplace Transform for the above equation 
leads to the eigenequation as follows: 

))((

0)1/(5.0 2
0

2

ωξ

ω

is

TsklisJsJ pd

+=

=++−    （9） 

The solotion of the above equation shows that the 
low-pass filter changes the eigenfrequency values only a 
little. The eigenfrequency values at zero rotation are 
different with or without the low-pass filter, because the 
low-pass filter alters the stiffness of the system. The 
nutation frequency of the rotor with the low-pass filter 
considered is a little lower. 

The low-pass filter harms the damping of the nutation 
and the precession, and cause the damping to decrease, 
especially for the nutation of the rotor. The nutation and the 
precession become one of the unstable factors of the rotor. 

2. WITH DIFFERENTIATORS 
If differentiators are added to damp the gyroscopic 

motions, equations (1) and (2) become as follows: 

05.05.0 22 =+++
••••

ααβωα klDlJJ pd   (10) 

05.05.0 22 =++−
••••

ββαωβ klDlJJ pd  (11) 

If φ=α+iβ is defined, the above equations can be 
written as follows: 

05.0)5.0( 22 =+−+
•••

ϕϕωϕ kliJDlJ pd  （12） 

Its eigenequation can be deduced as follows: 
05.0)5.0( 222 =+−+ klsiJDlsJ pd ω  (13) 

Its latent roots are given as: 
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dpp

J
klJiJDlDliJ

s
2

2)5.0()5.0( 2222 −−±−
=

ωω  (14) 

From the above derivation (D = 0.004 N·s/um), the 
eigenfrequencies in function of the rotational speed can be 
seen in Figure 3. 

 
FIGURE 3: Eigenfrequencies in function of the rotational 

speed. 
 

In Figure 3, it can be found that the D greatly changes 
the eigenfrequency values at low rotational speeds while it 
only slightly changes the eigenfrequency values at high 
rotational speeds. Furthermore, the D greatly influences the 
damping of the nutation and the damping of the precession. 
The damping of both of the motion decreases as rotational 
speed increases, and it will become zero when the rotational 
speed tends to infinite. 

But the differentiators in (10), (11) are both ideal 
differentiators. Applying such differentiators increases high 
frequency noise and makes the system unstable. 
Furthermore, the phase lag factors mentioned in the 
previous sections also influences the differentiators. Here, a 
first order differentiator is used to illustrate the problem.  

Replacing the D with D/(Ts+1) results in the 
following equation with the similar derivation as (15): 

))((0

5.0)1/(5.0 222

ωξ

ω

is

klTssDlisJsJ pd

+==

+++−  （15） 

With 0.5Dl2s/(Ts+1) (T=0.0002 s), the 
eigenfrequencies in function of the rotational speed are 
illustrated in Figure 4.  

 
FIGURE 4: eigenfrequencies in function of the rotational 

speed. 
 

Figure 4 shows that the nutation frequency increases 
noticeably and the ratio of the nutation frequency to the 
synchronous frequency at high rotation speeds is no longer 
close to 1.6 but is much higher. The precession frequency is 
influenced only a little.  

With T=0.0002 s, the damping of the 
eigenfrequencies in function with the rotation speed is 
shown in Figure 5. It is seen that the damping of the 
nutation and the damping of the precession decrease while 

the rotational speed increases. 
 

 
FIGURE 5: Damping of the eigenfrequencies in function 

with the rotation speed. 
 

3. CROSS FEEDBACK CONTROL 
The cross feedback control adds cross feedback 

channels to PD controllers. We have given detailed 
discussion of the dynamics influences of the cross feedback 
control in a previous paper [9]. The conclusion is that the 
displacement cross feedback helps restraint of the 
precession but hinders restraint of the nutation and it has 
little effect on the eigenfrequencies of the rotor, whereas the 
velocity cross feedback can restrain the gyroscopic motions 
and decrease the nutation frequency while increasing the 
precession frequency [10]. 

However, in that paper [9], the phase lag factors in the 
cross channels of the controllers had not yet been studied, 
and they will be discussed below. 

For the displacement cross feedback control, the 
eigenequation with the low-pass filter is given as follows: 

0)1/()5.0( 22 =+−+− TsikklisJsJ cpd ω  （16） 

The solution of Eq. 16 does not change anything in 
the damping of the solution of equation (9). Compared with 
the eigenfrequencies in Figure 2, the nutation frequency 
decreases a little and the precession frequency increases a 
little. The change is small enough to be ignored. 

For the velocity cross feedback control, the 
eigenequation with the low-pass filter (to simplify the 
problem, only cross terms’ phase lag is considered) is given 
as follows: 

))((0

5.0))1/(1( 22

ωξ

ω

is

klisJTsksJ pvd

+==

++−−  （17） 

 
FIGURE 6: Eigenfrequencies in function of the 

rotational speed (kv = 0.3). 
 

With the solution of the equation, the 
eigenfrequencies in function of the rotational speed is 
shown in Figure 6 (kv = 0.3, T=0.0005 s). Compared 
with the eigenfrequencies without the low-pass filter, the 
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nutation frequency greatly increases while the precession 
frequency decreases only a little. The damping of the 
nutation and the damping of the precession is shown in 
Figure 7. 

 
FIGURE 7: Damping of the eigenfrequencies in function of 

the rotational speed. 
 

In Figure 7, it can be found that the nutation damping 
of the closed-loop system inceases while the precession 
damping decreases when the velocity cross feedback control 
is applied with the low-pass filter considered. 

 
SIMULATION 

In the previous sections, the dynamics of the rotor 
with the different suspension characteristics were discussed, 
and the closed-loop system will be studied by simulation 
below. In the simulation, the low-pass filter used is 
1/(0.0005s+1), the suspension stiffness is 0.2N/um, the 
differentiators are as 0.0004s/(0.00002s+1). 

Figure 8 gives the bode graph of the closed-loop 
system running at the rotational speed of 390 Hz. 

 
FIGURE 8: Bode graph of the close-loop system running at 

the rotational speed of 390 Hz. 
 

Figure 8 shows that the high frequency peak is 
about 663 Hz and the low frequency peak is below 2 
Hz. Therefore, the ratio of the high frequency peak 
position to the synchronous frequency position is 
about 1.7. It is higher than the ratio shown in Figure 
2. 

The closed-loop system was simulated at 
different rotational speeds, and the curves in Figure 9 
show the relationship between the peak values and the 
rotational speed. It is shown that the high frequency 
peak position of closed-loop systems is markedly 
higher than the nutation frequency position in Figure 
2 at the same rotational speed, whereas the low 
frequency peak position differs only a little from the 
precession position in Figure 2. 

 
FIGURE 9: Peak positions in function of the rotational 

speed. 
 

EXPERIMENT 
After the dynamics analysis in the different conditions 

above, some related experimental results will be provided in 
the subsequent sections--the experimental results about how 
the nutation and the precession cause system instability, the 
effects of the velocity cross feedback control and the 
displacement cross feedback control have been given in a 
previous paper [9]. 

In the system, the rotor surface is not so perfect 
smooth because of machining limitation, and there are 
harmonic noise caused by electronic parts of the system. 
The sensor runout was severe, and obvious resonance peaks 
of double-synchronous frequency and tri-synchronous 
frequency could be observed in FFT curves of displacement 
sensor signals when the rotor ran. Sometimes, high order 
peaks were even higher than the synchronous frequency 
peak at high rotational speeds. It is shown in Figure 10:  

 
FIGURE 10: FFT curve of a radial displacement sensor 

signal gotten when the rotor runs. 
 

 
FIGURE 11: Result of the lost stability experiment at the 

rotation speed of 393 Hz. 
 

The real damping of the nutation was poor when the 
rotor ran at high rotational speeds and the nutation 
frequency was near the double-synchronous frequency even 
when the velocity cross feedback control was applied. The 
sensor runout signals could excite the nutation vibration of 
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the rotor. It was found that the rotor becomes unstable when 
the nutation frequency peak in FFT curves was raised. 
Figure 11 shows the result of the lost stability experiment at 
the rotation speed of 393 Hz, and it is easy to find the 
nutation peak about 681 Hz. Therefore, the ratio of the 
nutation peak position to the rotational speed is about 1.73. 
This is consistent with the previous analysis about the high 
frequency peak of the closed-loop system (Figure 4 and 
Figure 9). 

 
CONCLUSION 

For the flywheel rotor supported by AMBs, the phase 
lag factors and the controllers greatly influence the value of 
its nutation frequency and the damping of the nutation and 
the precession. The nutation frequency increases to near the 
double-synchronous frequency and the damping of the 
nutation becomes poor when the rotor runs at high 
rotational speeds. Furthermore, the sensor runout signals 
can excite the nutation vibration of the rotor and make the 
rotor unstable. In controller designs, to ensure that the rotor 
can run stable at high rotational speeds, the nutation 
resonance peak of the closed-loop system near 
double-synchronous frequency should be avoided. At the 
same time, the sensor runout signals should be restrained. 
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