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ABSTRACT

The aim of this paper is to realize a sliding mode
control system using robust hyperplane based on
fuzzy model!! for active magnetic bearing (AMB)
system with gyroscopic rotation. A fuzzy model of
AMB system is built from the input and output data
of the actual turbo-molecular pump by using fuzzy
neural network(FNN)[Z]. The sliding mode controller
has a switching hyperplane using # -synthesis theory
which has a powerful robustness and can suppress
spillover phenomena. The ultra high-speed operation
test of the actual turbo-molecular pump has been
done by using the proposed controller. The goed
experimental results have been obtained. Therefore, it
has been clarified that the proposed scheme is very
useful strategy for AMB system.

INTRODUCTION

A lot of research®lof the application of robust
control theory in the AMB digital control are
reported. Here, the mathematical model of the AMB
system is already-known in these Ttesearches.
However, There are a lot of cases that this
mathematical model cannot be derived in the real
system.

In this paper, the AMB system which the
mathematical model is not obtained is identified by
using the FNN technology. And, the sliding mode
contrel method which has robust hyperplane based
on the p-synthesis theory is proposed for this fuzzy
model of the AMB identified.

First of all, in order to design robust hyperplane using
u -synthesis theory, the controlled system is shown
by the equation of the canonical form in this report.
The modeling is done as a two output system. Next, a
structural perturbation block which includes the
actual parameter is made from the obtained fuzzy
model, and the AMB control system by the sliding

mode control which has robust hyperplane using u
-synthesis theory is designed. In this hyperplane, the
robust stability and  the robust performance to two or
more structural uncertainties are possessed. And, the
control system was mounted on the digital control
machine which used DSP, and the levitation and the
rotation experiment with a real machine were done
with the turbo-melecular pump(TMP} which reached
the rated operation 45000 rpm. Moreover, in order to
verify the robust control performance, the
experiments nsing real machines of the AMB system
with a different parameter were done. As a result, the
effectiveness of the technique proposed with this
paper was proven.

MODELING

A Basic Structure of Five Axes AMB

FIGURE 1 shows a basic structure of five axes AMB.
In this research, to give priority to practical use and
easily of design, five axes are assumed to be an
independent AMB model of one mass respectively.
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FIGURE 1: Active magnetic bearing system
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Fuzzy Model of AMB

A fuzzy model is a model described by the if-then
form used by the reasoning method of the fuzzy
control. If a dynamic input-output relation is shown
by the difference equation, the consequent part
becomes the dynamical model of the controlled
system. In this research, the structure of a fuzzy
model chooses the premise part input variable to be
the rotor displacement(x,) and the primary time
difference of the rotor displacement{ A x,) , and
makes the consequent part input variable to be the
rotor displacement(x,y and the primary time
difference of the rotor displacement( A x,) and
manipulated variables(u,). Moreover, we decide the
consequent part output o be the rotor
displacement(Xy.;) and the primary time difference of
the rotor displacement( A xy.,) after one sampling.
The fuzzy models are as follows:

L:if xpissmall(A) and Ax issmall(A,,)  then
Xpo =aly Xy +al Ay, Ax) =ayx +ah A +aluy
1)
L2:f  xgissmall(A;) and Axy ishig(dy,)  then
i =ahx rabAn, Ax}, =adix +ahAvy vaduy
2)
L3iif  xgisbig(dy) and Ax, issmall(Ay,)  then

3 .3 3 3 _ .3 3 3
Xpwp SO X TARAY , Axp, =a3,%, +aylxg +asu,

3

Léif  xpishig(dy) and Ax isbig(4y,)  then
Sia=ahx +abdn . Axd, =adix +afAx +adu,
(4)
Here, L' is a rule of a fuzzy model.

a',a'2,8%,a0,and a; are the consequent part
parameters of rules(i=1,2,3,4). Aj; and Ay, are the
premise part membership functions(jj,=1,2). uk is
manipulated variable.

Identification of Fuzzy Model

A fuzzy modeling is to identify various parameters of
a fuzzy model of Egs.(1)<(4) by using the
input-output data of the controlled system. There is
FNN technology in this fuzzy modeling most as an
effective technique. This achieves calculations
process of the fuzzy reasoning by the structure of the
back propagation model of the neural network. In this
research, we apply the FNN technology, and
construct FNN to identify various parameters of
Eq.(1). FIGURE 2 shows FNN structure.The premise
part membership function is obtained from Eq.(5) and
Eq.(6), and is corresponding to the output of the unit

F) @ M nH (Jd) Ky (L
FIGURE 2: Structures of FNN

in the (C) layer.
(6 P——— ®
T1+ exp(—x)
o ‘ (6)

B 1+ exp{— wel(x; + wc)}

Here, x;=x;. Ax, The weighting coefficients Wc
and Wg are parameters which provide the center
location and the inclination of the shigmoid function
respectively. FIGURE 3 shows the shape of the
premise part membership function. In the (E) layer,
the input is the premise part adaptation p; , and the
output is a value standardized by the sum total. They
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FIGURE 3: Membership Function

obtained from Eq.(7) and Eq.(8) respectively.

4 = A0 )42 (Ax ) )
7>
;= ®
%,
q

Moreover, the consequent part output(xikﬂ) of the
rule of the each fuzzy model shown by Eq.(9) is
obtained from the output in the (Q) layer, and the
consequent part output( A x'y.,) of the rule of the each
fuzzy model shown by Eq.(10) is obtained from the
output in the (J) layer.

Xi (X, Axy ) = ayx; + apdx ®

Axp 1 (%, Ay 1) = ay X + aplx, + d, (10)

Here, a'j; and a'; are products of weighting
coefficients We and Wf. a'y,, a'5,, and a'y; are products
of weighting coefficients Ws and Wa. For a certain
input, the fuzzy reasoning value(x ) is calculated
like Eq.(11) in the (R) layer and the (S) layer, and the
fuzzy reasoning value( A X'w1) is calculated like
Eq.(12) in the (K) layer and the (L) layer.

. 4
Xpa = _Elﬂ:x;m(xk,Axk) (11)
A 4 _
Axpq = Zl.u:'Axkﬂ(xk’Axk’uk) (12)
=

The weighting coefficient is updated by the back
propagation method. A lot of the methods are used for
the study method. The output error performance
function is defined like Eqgs.(13)- (16).

1 .
By == ok ~ X)) (13)
K
E=% Ek {14)
k=1
1 *
EE, = (Axy - Axe ) (15)
K
EE=3Y EE, (16)
k=1

The weighting coefficient is updated by Egs.(17)-
(19). ‘

OE

In) - _ =k

1 = o an
OEE

2my — L1

sHm = o0 (18)

WA (m +1) = Wi (m) + ’7}7)55’(")0:("-1) - (19

Here, 6™ is a output error of n layer j unit, and it
spreads from the output layer to the input layer in the
opposite direction(l=1,2). w;™ is the weighting
coefficient between the n-1 layer and n layer . 7 ;™
is a study rate to W,;™. I is the input of n layer j
unit . 0" is i unit output of the n-1 layer.

The collection, the selection, and the correction of the
input-output data used to identify the model are very
important in the modeling. In this research, the real
levitation test of the TMP (The experiment machine
No.1: 2.5kg in the mass of the rotor and rated speed
45000 rpm) which is the controlled system of this
tesearch is tested with a past, analog AMB controller.
The model identification uses the input-output data
obtained from this experiment.

DESIGN OF ROBUST HYPERPLANE
Introduction of State Equation

In this research, the consequent part of a fuzzy model
of the AMB system are several linear relational
expressions which show the dynamic characteristic of
the controlled system like Eqs.(1)-(4). Here, an
approximate common nominal parameter and
structural width of the change are obtained from the
parameter of the consequent part respectively as
follows:

max_ay, +min_a;

- , "= max_ gy —mn_ag, (20)

Ay =
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max_a,, +min_a,,

Ay = . , Adyy = max_a,zz—min_au 23}
Ay = max_dy, ;min_azl . Ay, = max_da,, —min_as; (22)
Ay = max_ay, ;min_azz . Adyy = max_au;min_azz (23)
B, = max_a,; -zkmin_an . ABy= max_day ; min_ay; (24)

Here, max_a; and min_a;; show the maximum value
and the minimum value of aij(“) respectively
(i=1,2;j=1,2,3;n=1,2,3,4). Moreover, these nominal
parameters are obtained from the discrete system, and
when a continuous system design method is used, it
only has to convert the discrete system parameter into
a continuous system parameter by MATLAB.
Therefore, an approximate equation of state of the
AMB to design the controller is decided like Eq.(25).

AHARMEE e
X3 Ay Ay |1 X B,

Hyperplane Design Using p-Synthesis Theory
First of all, hyperplane with dynamics is defined like
Eq.(26) in the system of Eq.(25).

¥ =8(x) + x, (26)

At this time, S(.) is the linear operator like Eq.(27).

z2=Fz+Gx

27
S(x),z) = Hz + Lx,

When the state is constrained on hyperplane
(¥ =¥ =0), the system of Eq.(25) is former made
low-level of Eq.(28). At this time, x, is written by
Eq.(29).

Z2=Fz+Gx 28)

X = Anx + Ay

x; =—=5(x) 29)
=—Hz - Lxl

It is found that x, is the state and x, is the new input
on hyperplane. Therefore, the block diagram of
hyperplane when the p-synthesis theory is used is
given by FIGURE 4. Here, W is used as a weighting
function corresponding to the unmodeled dynamics,
especially the uncertainty in the high frequency band.
A Ay and AAj; are the weights of a structural

uncertainty of nominal parameter A, and A,;. They
are decided by the width of the parameter variation of
Eqgs.(20) and (21) respectively. These are related to
guarantee the robust stability. W, is a weighting

K

FIURE 4: Block diagram of generalized plant

function used for nominal performance. M is the
reduced order plant. P is the generalized plant
including the weighting function. K is the
compensator to stabilize the system on hyperplane.
Therefore, the hyperplane design becomes to decide
{F,GH,L} of matrix K by the p-synthesis theory.

Moreover, the performance function of Inequality
(30) is obtained for the system of FIGURE 4 in
u-synthesis theory. A left hand side of expression (31)
means the structured singular value. To satisfy these
two expressions both, compensator K is designed.

W, (I +KM) ' KM
Ad A T+ KMY ' M

<1 (30)
A, A~ T+ KM) T KM
Wy + KM)™! .
#a(LFT(P,K)) <1 (1)

As an example, Eq.(32), Eq.(33), and FIGURE 5
show weighting function(W1 and W2) which is set by
the try and error in the upper x direction. The
dynamic characteristics of obtained compensator K
become the low-pass filter like FIGURE 6.

25+5
= 32
=T 1000 (32)
W,y = 0.00255 + 25000 G
5+ 5000
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There is a feature that this controller K does not
control in high frequency band though the nonlinear
sliding mode control input strongly works in low
frequency range. It seems to be extremely effective to

10° 1o’ 1o 10 ‘ 10t
Fraquency [rad/s]

FIGURE 5: Gain plots of weighting functions

Log Magnituda
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FIGURE 6: Frequency response of K

AMB system which has the ultra high-speed rotor
like the TMP as the measures of the spillover,
chattering, and high frequency noise.

DESIGN OF SLIDING MODE CONTROLLER
When the sliding mode exists, an equivalent control
input in hyperplane can be expressed as Eq.(34) by
using Eqs.(25), (28), and (29).

U,y = =By [HFz+ (HG + Ly + Ay )%y + (Léyp + Agy)¥5] (34)

Next, the reaching condition or the variable structure
control rule to constrain the state on hyperplane is
derived. The candidate -of the Lyapunov function is
chosen by Eq.(35) as the switching function ¥. The
variable structure control rule is provided as Eq.(37).

Ly
=2 (35)

FIGURE 8: Configuratio

V=¥.¥ :
= Y[ HEz+{HG + Ldy; + Ay yx, + (LA + A39)%y + Byl
= Bz‘-[’(u—u,q) <0

swithing function
FIGURE 7: SMC with H., robust hyperplane

Upg — Eillgy|, BZ‘P >0
u= 37
Uy + € B,¥ <0

Uegl?

Here, & is the positive number denotes switching
width, and is decided by try and error with an
judgement of the control performance and the value
of the control input. Moreover, the block diagram of
the sliding mode control system which has p-robust
hyperplane is finally shown in FIGURE 7.
EXPERIMENT

Experiment Method

The system shown in FIGURE -8 was composed for
the experiment. The SMC control law is installed on
DSP. The sampling time is 0.1 msec. The different
experiment machines shown in Table 1 were used for
the experiment. The first experiment machine is a
controlled system used to design control system. The
second experiment machine and the third experiment
machine have the large change compared with the
first experiment machine in the parameter. Thus, they
are used to verify the robust performance of the
control system

4
n of the experimental setup

r
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TABLE 1 Rotor specification of test rig P D
Test rig Mass Diameter Length 1X ot A IR
No. (kg) {mm) (mm) o : Lo I 1254m
2 8 52 257 S : i
3 9 52 276 2X _’f‘ 1 =
: -t

Experiment Result

First of all, the real levitation and the rotation test
were done with the first experiment machine.
FIGURE 9 shows the time history response from
arbitrary initial state to the stable levitation in the
upper and lower x directions. It is found that the state
of the stability is realized within 0.2 seconds from the
figure, and the excellent control was achieved.
Because the y direction obtained the same result as
the x direction, these results were omitted here.
Moreover, because the control of the z direction is
easier than one of the x and the y directions, this
result is also omitted here. FIGURE 10(a,b) is
Lissajou's wave of the upper and lower directions at
the levitated state respectively. The left hand side is
three dimensional display, and the vertical direction
indicates the time. The right hand side shows the
orbits. FIGURE 10(c,d) is Lissajou's wave of the
upper and lower directions at the rated rotation
state(45000rpm) respectively. It is found that the
diameter of the orbits are only several um or less
from this figure. FIGURE 11 shows the behavior of
the upper x direction from the state of the stable
levitation up to the operational speed as one example.
Moreover, in order to verify the robust performance,
the real levitation tests with the second machine (the
operational speed 35000 rpm) and the third machine
were done using the controller for the first machine.
FIGURE 12(a,b) shows the time history response of
the second machine and the 3rd machine from
arbitrary initial state to the stable levitation in the
upper and lower x directions. It is found that the state
of the stability is realized within 0.5 seconds from the
figure for both machines. In addition, the real rotation
test up to the operational speed was done with the
second machine. FIGURE 13(a,b,c,d) and FIGURE
14 show the results. FIGURE 13(a,b) is Lissajou's
wave of the upper and lower directions at Orpm state
respectively. FIGURE 13(c,d) is Lissajou's wave of
the upper and lower directions at 35000rpm state
respectively. FIGURE 14 shows the behavior of the
upper x direction from the state of the stable
levitation to the operational speed as one example. It
is found that the second machine with a large
parameter  variation achieved a  high-speed
rotation(35000rpm) from these figures. Moreover, the
vibration is suppressed within several z m during
the whole rotational speed.

FIGURE 9: Time history response of test rigl fro
initial state
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(a) Upper side of test rig](0rpm)

(c)Upper side of test rigl (45000rpm)

128

B Fi

®

wm

2 S

178

bt

N

(d)Below side of test rig1(45000rpm)
FIGURE 10; 3-D orbit of shaft center

CONCLUSIONS
In this research, the AMB system was expressed by
the fuzzy model, and the fuzzy modeling of the AMB
was done by FNN. The sliding mode control method
which has robust hyperplane based on the p-synthesis
theory is proposed for this fuzzy model. And, the
experiment using the commercial use machine up to
ultra high-speed rotation was done with TMP,
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FIGURE }1: Water fall plots(1X of test rigl)
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(b) Upper side and below side of test rig3
FIGURE 12: Time history response from initial state
(X direction)

Moreaver, in order to verify the robust performance,
the experiments using the real machine with a
different parameter were done. As these results, the
effectiveness of the technique proposed with this
paper was confirmed.
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