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ABSTRACT

This paper deals with a new design procedure for
controlling a flexible rotor system using active magnetic
bearings (AMB).

The research aim is to satisfactorily pass through a
critical speed and achieve high-speed rotation. For this
purpose, it is necessary to control both vibration and
motion using the modeling method presented in Seto[1]
and an effective control method. Furthermore, utilizing
the model, the design of a new controller consisting of
the combination of PID contral and LQ control is
applied 1o the control of motion and vibrations of a
flexible rotor.

Computer simulations are carried out and the
effectiveness of the presented procedure is investigated.

1. INTRODUCTION .

In recent years, AMB systems have been applied to
various machines such as grinding machines and energy
storage flywheel systems. In general, these control
systems include a notch-filter or consider only the
control of the first three modes. Furthermore, in the case
of an unforeseen accident, because the transfer function
changes, the notch-filter doesn’t take effect and a
so-called “spillover instability” may result, due to the
existence of vibration modes. In such cases, the
vibration modes cannot be neglected in the controller
design procedure. Therefore, the vibration control of
high order flexible modes is necessary. The flexible
rotor should be modeled as a multi-degree-of-freedom
structure, as a notch-filter is not added to the controller,
so that the vibration modes can be taken into
consideration in the control system design procedure.
According to the idea presented above, it is difficult to
exactly identify the vibration modes of the flexible rotor,

because in the case where the flexible rotor-AMB
systems are precisely considered, the equivalent mass,
stiffness and the orthogonal modal matrix become
complex in shape. One of the authors bad presented a
method for identifying such complex flexible systems
using an iterative modification of the modal matrix.
Nevertheless, this method has not been applied to such a
complicated system as a flexible rotor.

In this paper, a controller design procedure for a
flexible rotor-AMB system is considered. The modeling
method presented by Seto is applied in order to obtain
an exact multi-degree-of-freedom model of the flexible
rotor-AMB system, Utilizing the obtained model, a state
equation system model is composed and a feedback
gain controfler is designed using PID and LQ control
faws. It is important to use different control methods for
controlling both the rigid and flexible modes. That is,
the feedback control of the rigid mode is designed using
PID control law, whereas the feedback control of the
flexible mode is designed using LQ control law. As the
system model includes the multi-degree-of freedom
structure model, the designed controller achieves
simultaneous motion and vibration control.

Computer simulations are carried out and the
effectiveness of the presented procedure is investigated.

2. CONTROL OBJECT

Figure 1 shows a schematic diagram of the flexible
rotor used as the control object in this research. The
mass of this rotor is about 5.369{kg]. This research
considers only the dynamics of the flexible rotor in
radial directions, because the PID controller has
controlled position of the axial direction. In particular,
for the sake of simplicity, this research does not
consider the gyroscopic effect of the electric coil.
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Fig.1 Schematic of flexible rotor-AMB system

3.MAKING REDUCED ORDER PHYSICAL
MODEL

3.1 Brief Introduction of Seto’s procedure

First, the Seto’s method is presented schematically -

using a 2DOF model as an example,
Generally, the mass matrix, M, and the stiffness
matrix, K, in the physical domain are given by

M=(0eT)" W
K=(o") 00" | 2)

Here, @ is the normalized modal matrix, and £ isa
diagonal matrix of the natural frequencies of each of the
modes.

Because the lumped mass model is not obtained at this
stage, the exact value of @ is an unknown quantity.
Therefore, a temporarily normalized modal matrix is
constructed from the mode shapes shown before.
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Because these elements are given from the modal
shapes on the distributed parameter system, the
temporarily normalized modal matrix constructed from
the modal shapes is not guaranteed to satisfy the
equation of the mass matrix, where both sides should be
diagonal matrices.
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Therefore, at first, the non-diagonal elements are
defined as the error function &, given by

E=G @ + 00y (5)

Then, the sensitivity matrix of the error function in
terms of @ can be written as
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The modification vector for @, which reduces the
error function to zero, is represented as
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By using this modification vector and iterating the error
function, it tends toward zero. So, the expected
normalized modal matrix, @, is obtained.

¢, + 0, — ¢, ®

The mass matrix, M, and the stiffness matrix, K, in the
physical domain are then determined.

In this way, the reduced order model is constructed
using this method from the normalized modal matrix
and the natural frequencies.

3.2 Reduced order model of the rotor-actuator
system

In this section, the experimental rotor-actuator system
is modeled using Seto’s procedure. '

The modal shapes and their natural frequencies
associated with the rotor obtained by finite element
analysis using MSC.NASTRAN are shown in Figure 2.
In this study, we consider that the first three modes are
to be controlled. Therefore, a three-degree-of-freedom
(3DOF) reduced order model is required. The bottom of
the rotor and the supported points of the actuators in the
thryst direction, which are selected as the modeling
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points, are shown in Figure 3. In this study, the control
of the flexible rotor is of particular interest. Therefore,
in this analysis, the control forces of the AMB are

treated as the servo stiffness: ksl and ks2.

LI\

1st mode 2nd mode 3rd mode
11.25[Hz] 27.06{Hz] 1244[Hz]
Fig.2 Vibration mode shapes

Fig.3 Modeling points

Using the method for constructing the reduced order
model, a 3DOF reduced order model of the control
object was constructed and is shown in Figure 4.

Figd. Reduced Order Physical Model

The physical parameters are shown as follows. Here,
f, and f,, are the controlling forces by the AMB.

(K, =—0.1901x10" [N /m)]

= 7
=179 [kg] k, =1.833x10 7[N(m]
- k;, =—1.0146x10" [N/ m]

m, =2.485 [kg]l , < )
k,, =0.5808x10" [N/m]

m, =0.4590kg] ,
kyy =2.986x10"  [N/m]
ks, =—0.3194x10" [N/m]

4. CONTORL SYSTEM DESIGN

In this section, the design of a control system for a
flexible rotor-AMB system model obtained in the
former section is carried out. Firstly, the PID control
law that controls the two rigid modes (parallel and
comical) is applied to the system model. Then, LQ
control law that controls the flexible modes is applied.

4.1 State Equation of Control Object
According to the former section, the state equation of
the control object is given as:

X =AX,+Bu, (10)
Y, =C.X, (1)

Xr = {'il 'i:Z &3 xl xz xS }T
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The coefficient matrices A,, B ,andC, are given by
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Here, k,, and k,, inmatrix A, include the servo
stiffness. The ksl and ks2 are therefore reduced.

4.2 PID control

In this study, using PID control stabilizes the system.
The two rigid modes are also controlled. Figure 5 shows
the associated block diagram.

Fig.5 Block diagram

The transfer function from i to u is designed. This is
given by

i _(Tas+l)(Tas+1)
Upyp, Ts+1 Ts+1

Furthermore, it can be shown that
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Here, Fig.5 shows that
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According to the equation shown above,
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and
R

i Tz 1PID

1 1
T F e+ F“zno

(16)

a7

4.3 Augmented system

{Kew |+
Fig.6 Block diagram of augmented system

Figure.6 shows a block diagram of the control system
based on the combined PID and LQ control systems.

The feedback gain vectors, K, and K, are

obtained simultaneously by applying LQ control law to
the augmented system. According to Figure 6, the state
equation and output equation are given by

X =AX+BU (18)
Y=CX (19)
Here,

X={il LA A nox X 4 & g ez}r
and
Us=-(K;p)C+K )X

The coefficient matrices are given by
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5. COMPUTER SIMULATION
5,1 PID control

The simulation shows the frequency responses using
PID control law. As examples, the responses at mass
point 1 are shown in Figure 7. The gray lines represent
the unconirolled responses while the black lines
represent the controlled responses. In Figure 7, the
frequency responses from the control command to the
displacement at mass point 1 are shown. It is clearly
shown that the 1st and 2nd rigid modes are well
suppressed. However, the 3rd flexible mode is not
suppressed. This is because PID control law is used for
controiling the 1st and 2nd rigid modes in this study.
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Fig.7 Frequency Response

5.2 PID and LQ control

The simulation shows the frequency response using
the controller based on the combined PID and LQ
control laws. As an example, the responses at mass
point 1 are shown in Figure 8. The same fegend applies
here as for the equivalent figure shown in the previous
section. In Figure 8, the frequency responses from the
control command to the displacement at mass point lare
shown. It is clearly shown that the 3rd flexible mode is
well suppressed by applying the controller based on the
combined PID and LQ control laws. Good control
performance is achieved by this controller.
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Fig.8 Frequency Response
6. CONCLUSIONS

In this paper. a controller design procedure for a
flexible rotor-AMB system is investigated. The
modeling method presented by SETO is applied in order
to obtain an exact multi-degree-of-freedom model of the
flexible rotor-AMB system model. Utilizing the
obtained model, a state equation system model is
composed and a feedback controlier is designed using
PID and LQ control laws. Figure 8 clearly shows that
all resonance peaks are well suppressed by applying this
controller. However, in this simulation, the control
performances for the st and 2nd modes are similar..
This is because the feedback gain by PID control law is
too large. _

Computer simulations are carried out and the
effectiveness of the presented procedure is confirmed.
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