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ABSTRACT

Closed-form design equations for magnetic bearings are
desirable for design optimization of sophisticated
electrical mechanical systems such as artificial hearts.
We develop asymptotic approximations to force and
stiffness characteristics of magnetic bearings formed
from concentric permanent magnet rings having
rectangular cross sections. The equations are well
adapted to spreadsheets and facilitate an efficient
numerical optimization process. The method was
applied to the development of the HeartQuest'™ VAD
(ventricular assist device), which achieved remarkable
compactness and stable operation.

INTRODUCTION
Design optimization is critical to the success of medical
applications of magnetic bearing technology as there
are typicaily competing performance objectives relating
to force, stiffness, size and weight. Moreover, it is
common in design practice that magnetic bearings
compete for space with the other components in a
system, and this competition is naturally formulated
and resolved using the language and tools of
optimization. In many cases, a magnetic bearing
solution would only be possible when the system
engineer had the freedom to design the entire system
with trade-offs in mind.

Commercial finite element analysis (FEA) packages
have greatly facilitated the conventional trial and error
designing process. However, such a process breaks

down in the case of complex and novel topology, where
the geometry itself is a design variable. In addition,
even the contemporary FEA products equipped with
optimization algorithms are limited in the number of
design variables subject to optimization. In order to
achieve an optimal design, designers have to
understand design relationships, trade-offs, and
sensitivities of design changes. These demands explain
the allure of analytical solutions and closed form
equations that are suitable for rapid evaluation..

Within the scope of magnetic bearings formed from
permanent magnets, the existing analytical methods
come with various complexity and approximation [1-
10]. The Backers’ theory [1] represents a simple
solution to stacks of alternately magnetized magnet
rings that extend infinitely in the axial direction.
Similar assumptions were used by Halbach who
proposed the magnetic structure known as the Halbach
array [2]. Despite of the usefulness of these
approximations, a practical magnetic bearing may not
be accurately modeled using infinite array
approximations. Yonnet's model [3], on the other hand,
deals with a single pair of magnets. However, the
theory was based on the magnetic dipole model and is
thus limited to magnets with sectional dimensions
smaller than the air gap length. Many practical
magnetic bearings do not fall into this category.
Another set of closed-form equations utilized by
Yonnet [4] removed such limitation on the size, but it
has yet to be further developed to treat stacks of
magnets with varying sizes or having a Halbach array
structure. Another work in the area is typified by the
development of a perturbative approach [5] to improve
accuracy of bearing stiffness calculation for small
diameter magnetic rings, which has to be used together
with FEA. The model proposed by Furlani [6] is based
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on dividing a magnet into small pieces and summing up
forces between those pieces. It was considered
unsuitable for our design needs in terms of the
complexity in evaluating the expressions.

One may have noticed that various analytical
solutions commonly stem from the basic principles of
electromagnetism, which can be found in textbooks like
Barger and Olsson [11] and Jackson [12]. Similarly,
we started from the basic principles and developed a set
of closed-form equations and corresponding methods to
compute forces and stiffnesses of magnetic bearings.
These met with our goal of having simple and accurate
expressions for design optimization.

FRAMEWORK

We consider a magnetic bearing formed from a rigid
magnet material, such as Neodymium-Iron-Boron
{(NdFeB), working in the range of constant
magnetization. The magnetic bearing is formed from
concentric magnet rings of rectangular cross-section,
and we assume a uniform magnet material for each ring.
This allows an axisymmetric modei of the bearing.
There is no limitation to the number of magnets
involved.

A permanent magnet can be modeled with
magnetization currents, which reduce to current sheets
on the magnet surfaces if the interior magnetization is
uniform [11,12], Figure 1 shows two types of magnet
rings under consideration, magnetized in axial or radial
direction as indicated by the arrows. The bold sides of
the cross-section indicate current sheets where the
direction of current flow is given by the right-hand rule
and the direction of magnetization. The models we are
using are linear, so the magnetic forces in a
sophisticated suspension can be obtained by simply
summing up forces between each pair of magnets on
the two bearing races. Figure 1 lists the four basic
combinations of such elementary pairs, with the upper
and lower rings belonging to different bearing races.

The current sheet model and the superposition
principle enable us to compute the magnetic forces
between two magnets by summing up the magnetic
forces between their equivalent current sheets. Thus,
the basic force calculation involves the interaction of
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Figure 1 Basic combinations of magnet rings in a
bearing unit and their equivalent current sheets

(dashed line is axis of symmetry; only half section
is shown)

two current sheets.

Note that each elementary pair of magnet rings in
Figure 1 consists of four combinations of current sheet
pairs. In order to derive a general equation for all these
combinations, we constitute a pair of L-shaped current
sheets as shown in Figure 2. It is obvious that any of
the current sheets in Figure 1 can be derived by
assigning zero length to cne leg of the “L”. Therefore,
equations for the force and stiffness between these L-
shaped current sheets apply to any pair of interactive
current sheets in our magnetic bearing models.

Figure 2 also indicates the geometric quantities
defining the current sheet pair. In order to distinguish
the race that exerts force from the race that experiences
the force, a prime is used to symbol any of the
quantities for the former race. A further convention is
made that the joint of the two current sheets
experiencing forces forms a corner to the lower left,
and the joint of the two current sheets exerting forces
forms a comet to the upper right. Accordingly, the
radial and axial distances between the two corners are
Ar=r—r' (1a)
Az=z-2' (1b)
which may be positive, zero, or negative.

In order to calculate forces between concentric
magnet rings in a cylindrical coordinates system (r, z),
we start with a planar 2-D problem in (%, y), which is
characterized by flat infinitely long current sheets, and
then extend the results to the actual ring-shaped
magnets. The coordinates x and y will correspond to the
coordinates r and z respectively, and the same L-shaped
current sheets as indicated in Figure 2 are used as the
cross section in the planar 2-D model. Applying the
classical solution to the magnetic force between two
infinitely long current-carrying wires ([11], section 5-3)
yields the following equations for the x and y
components of the force on the upper right sheets in
Figure 2.
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Figure 2 A pair of L-shaped current sheets for analysis
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where g4, is the permeability of a vacuum (and air for

practical purposes), H. is the coercivity and the surface
current density in the current sheet model, and
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The extension of planer 2-D results to the

axisymmetric situation follows methods employed in
other investigations [1,3,4]. This results in a net zero

radial force (due to concentricity). The net axial force
is approximated by the planar 2-D force per unit depth
multiplied by the average perimeter of the current sheet
pair.
The average perimeter for the L-shaped current
sheet pair is taken as the arithmetic average of the sheet
legs.
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Therefore, the net axial force on the current sheet is:
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Consider next the stiffness of the suspension. The
axial stiffness in the L-shaped current sheet pair is
obtained by partial differentiation of F, with respect to
Az:
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The radial stiffness is obtained through application
of the Earnshaw’s theorem [3,4], which implies that the
radial stiffness is half of the axial stiffness in an
axisymmetric construction. That is,

kl
== (12)

Finally, the angular stiffness with respect to axis r
(normal to the z axial and passing through the origin) is
obtained as:

k, =[—ij +(Z+W%)2]k,

(13)
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where z is the axial coordinate of the cormer of the
current sheets that experience force (Figure 2). It
should be noted that the coordinate system is placed in
such a way that the origin coincides with the bearing
center. The bearing center is the point about which an
infinitesimal rotation of the bearing component would
not induce any bearing force of the same or higher
order of magnitude. The bearing center can be found by
computing moments of every current sheet comprising
the whole suspension.

In summary, the following procedure can be
followed to calculate the forces and stiffnesses in a
magnetic bearing unit: First, replace the magnet rings
with equivalent current sheets. Second, compute
magnetic force and stiffness components between each
pair of current sheets with the above equations. Finally,
sum up all the interactive forces and stiffnesses to get
the net force and stiffness of the bearing unit.

OPTIMAL DESIGN METHOD

The above equations conveniently fit into spreadsheets.
For a bearing composed of m current sheets in one race
and n current sheets in the other race, there are mxn
elementary - interactive forces/stiffnesses to be
calculated. This corresponds to a matrix of mxn
elements in a spreadsheet for each force or stiffness
component (F, k, k,). Behind each element is an
equation, and a summation of these elements’ values
gives the force/stiffness of the entire magnetic bearing,

Once the spreadsheet is constructed, the various
numerical optimization algorithms can be applied. An
optimal design should start with an analysis of all the
relevant variables, so that the derived variables are
distinguished from the design variables. (Design
variables are those that all together define a particular
design, and derived variables are calculated from the
design variables and reflect the functions of the design.)
Some of the design variables are to be optimized, such
as the magnet dimensions; the others are already
specified, such as the air gap length. In the set of the
derived variables, one variable such as the stiffness is
chosen as the objective, or cost function, that is to be
minimized or maximized. In addition, there are a set of
constraints to define the limits for certain design
variables or derived variables based on interactions
with other components in the system design. In many
cases, a variable can be either treated as an objective or
grouped into the constraints set, depending on the
design approach.

Optimization on a sophisticated system consisting
of more components may follow an interactive
designing process wherein consiraints are negotiated
among subsystem designers. Each of the subsystems is
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Figure 3 An design example of optimized Hallbach
type magnetic bearing

to be optimized subject to constraints from the other
subsystems, and the design iteration has to end up with
optimization at the system level.

The stated magnetic bearing design method has
demonstrated remarkable effectiveness.and productivity
in our design practice. As an example, Figure 3 is an
optimized Halbach type magnetic bearing composed of
ten magnetic rings. All dimensions of the magnets were
determined by the optimization “solver” in Microsoft
Excel with the objective of maximizing the stiffness per
unit cross sectional area of the magnet array (including
all magnets). The generalized reduced gradient (GRG2)
nonlinear optimization solver embedded in Microsoft
Excel was used and demonstrated rapid and robust
convergence for this type of problem. The dimensions
shown in Figure 3 are relative to the air gap length, and
the inner radius of the bearing was pre-set to be 1.91.
All the magnets are the same material. A FEA was
performed to calculate the force and stiffness of that
bearing. The differences between our closed-form
expressions and the FEA were roughly 3%.

APPLICATION TO THE

HEARTQUEST™ VAD DESIGN

The HeartQuest™ ventricular assist device (VAD) is a
magnetically levitated centrifugal pump designed for
left-ventricular assistance. The design philosophy of
the HeartQuest™ VAD is to achieve system
optimization by means of the application of
mathematical modeling and optimization. The pump is
divided into subsystems including passive (permanent
magnet) suspension, active suspension (voice coil
actuator), electric moter, mean line flow, and cleatance
flow. Closed-form design equations were developed
for each of the subsystems. In addition, rigid-body
rotordynamic analysis was performed to ensure stability
of the suspension.

With the aid of the spreadsheets, more than a dozen
design concepts (topologies) were quickly optimized
and evaluated. Figure 4 depicts the chosen topology,
where the rotor contains an annular hub supporting the
impeller blades, and the stator (or housing) involves a
central spindle, a bottom, and an outer peripheral
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Figure 4 Schematic cross sectional view of the
HeartQuest™ VAD showing the magnetic
bearing configuration

construction that surround the rotor hub. The hub
accommodates all suspension and motor components in
the rotor. Permanent magnet bearings are implemented
in the inner bearing to provide positive radial stiffness,
as well as in the outer bearing to provide positive tilting
stiffness. The magnets in the outer bearing also serve as
magnets for a linear actuator referred to as the “voice
coil” to provide active control in the axial direction.

Of particular importance in the design of such
magnetic bearing system is the accuracy of the force
and stiffness calculation. According to Earnshaw’s
theorem and the relationship (13), the outer bearing
contributes a negative radial stiffness (k,<0) and 2
positive tilting stiffness (kp>0); the inner bearing,
depending on its aspect ratio, may induce a negative
titling stiffness (k4<0, possibly) although it offers a
positive radial stiffness (k,;>0). The net radial or tilting
stiffness is the difference between the two stiffnesses:
k, =k, +k, ,and k =k, +k,. The radius of the

outer bearing, Rz, is limited by pump size. Hence,
to meet the required tilting stiffness, there is a lower
limit on the absolute value of the negative radial
stiffness in the outer bearing, k,,. The radial stiffness in
the inner bearing, %,;, must be more than this to cancel
the negative stiffness of the outer bearing. However, the
former is limited by the allowable space for the inner
bearing unit. These trade-offs led to a design where the
two radial stiffnesses are of the same order of
magnitude. In fact, the net stiffness is a relatively small
number arrived at by the subtraction of two big
numbers. Consequently, the" - fractional errors in
force/stiffness of the individual bearing components are
amplified in the fractional error in the net
force/stiffness. It follows that the individual bearing
stiffnesses must be carefully calculated and controlled
in manufacturing.

The accuracy requirements were an issue with the
FEA. When performing FEA, we checked the
difference between the rotor and stator forces, which in
theory should be equal in magnitude and opposite in
sign but varied significantly with the coarseness of the
FEA grid and the computational method. We set a 5%

Positioning
stage

Figure 5 The stiffness test fixture, showing the
positioning stage and the force cell

limit for the allowed force difference relative to the
force we used to calculate the stiffness through
differentiation. Three dimensional FEA was performed
using Ansoft. We observed that the error limit had not
been met until the number of the finite elements went
beyond 200,000 and the computing time became
unacceptable for practical optimal design process.

Nevertheless, the equations developed in this work
exhibited satisfactory accuracy to meet the design
purpose with negligible computing time. In a period of
several months, more than one hundred detailed designs
were produced and evaluated. This led to an impeller
hub only 8 mm thick with 50 mm outer diameter. The
corresponding bearing and electric motor components
on the housing occupy a 3 mm thick space on the
bottom (Figure 4). The suspension achieved more than
a 40% margin relative to the first critical speed for both
transverse and precession rotor resonance. It also
possessed sufficient stiffnesses to reject external
disturbances including fluid loads and housing shock.

The HeartQuest prototypes have experienced force
and stiffness verification tests for the assembled as well
as the individual magnetic bearing components. Figure
5 shows a custom-built test fixture, which consists of a
positioning stage that moves the rotor component to
desired positions and a stationary force cell that holds
the stator component to measure its force and torque
components (the rotor and stator are not shown in the
Figure). The stage produces radial, axial, and angular
(titling) displacements at an accuracy within 2.54
micron for the linear positioning, and within 0.0001 rad
for the angular positioning. The force cell is a 6 degree-
of-freedom force and torque sensor with accuracy of
0.025 Nt for forces and 0.5 Nt-mm for torques
measurements.
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In addition to force testing, magnets are subjected to
magnetic property tests prior to assembly. These
include measurements of the remanence flux density
(Br) based on the Helmholtz coils technigue. Although
the manufacturer specified Br was used for the optimal
design, the measured Br was used as substitution in the
force/stiffness calculation to check against the
experiments.

Satisfactory accuracy of the spreadsheet has been
verified. Typical tests on the inner or outer bearing
components resulted in less than 7% error between the
measured and predicted stiffnesses when the bearings
did not involve any ferromagnetic material. Note that
the entire assembly of the real pump involves a small
amount of iron that negatively influences the accuracy
of the spreadsheet. However, FEA and experiments
showed that that influence was small enough to be
neglected in practice. For the various detailed designs
that were tested, the difference between measured and
predicted stiffness components was within 20% in most
cases. This made it possible to introduce correction
factors for the iron effects and eventually corrected the
error for the engineering designs.

Besides the ferromagnetic effects, the imperfections
in magnet material and mechanical tolerances are the
other major contributors to the errors mentioned above.
Those sources of error are difficult to model even with
FEA. The present theory and optimization method
provided a powerful tool for rapid design of
magnetically levitated artificial hearts.

DISCUSSION

The present theory is limited to systems where the
2D model is applicable. This requires concentric
magnet rings, as well as large bearing radius relative to
the air gap length of the bearing. The latter has not been
a problem in our designs, however.

In general, the theory does not apply to systems
with soft ferromagnetic material involved. Although
highly permeable material can be treated as a mirror for
permanent magnet images in some instances, such
treatment goes beyond the scope of this paper. The
theory’s successful application in the HeartQuest
product was based on the fact that the design process
has justified a topology of a virtually iron free magnetic
bearing, and ferromagnetic materials in the other part of
the pump have minor influence on the suspension.
When a system includes ferromagnetic material or soft
permanent magnets (e.g. Alnico), the applicability of
the present theory would have to be verified through
FEA. In fact, a design process using FEA to correct
closed form equations may take advantage of both
approaches. '

Since the force and stiffness both vary with the
squared coercive force of the magnets, it is important
for the design calculation to use magnetic propetties as
close to the true values as possible. In addition, the non-
uniformity of the material and mechanical
misalignment of the magnetization direction all
contribute to errors and must be taken into account in
the design process.
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