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ABSTRCT

This paper is concerned with a problem about robust
stabilization control of second-order linear switching
discrete systems with coefficient uncertainties, which
are appeared in control problem for robust rejection of
unbalancing vibration of magnetic bearing system in
which full information about system medel is not
known. At first we utilize supervisory control theory to
propose a novel robust stabilization switching control
strategy for the class of system. Then the proposed
approach is applied to a problem of active control of
periodic unbalancing vibrations of active magnetic
bearing. The experimental results show that the
proposed algorithm is effective for suppression of
periodic disturbance and robust to model uncertainties.

INTRODUCTION

Many physical systems are hybrid in the sense that they
involve interaction between discrete and continuous
dynamics. Ones are inherent, examples are mechanical
systems with backlash, dead zones, and static friction,
or electrical systems with switches; another ones.are
introduced artificially when applying supervisor based
multiple model switching control to plants which are
uncertain or operate under uncertain and/or varying
environmental conditions. Therefore recently a
remarkable attention has been paid to study on hybrid
dynamical systems especially switching systems [1-71.
In [1,2] a new concept so called multiple Lyapunov
fanction is introduced to derive out results about
stability of switching systems. For example in [7] the
problem on analysis of stability for switching systems
consisting of a number of linear subsystems has been
cast into a convex optimization problem in terms of
linear matrix inequalities (LMI) which can be

effectively solved by numerical methods. It is another
important problem how to find appropriate switching
rule that stabilizes plant to be controlled at origin. To
our knowledge, researches on this design problem have
just been conducted, so a few of relevant results have
been published. In [8] robust stabilizing method of
hybrid systems in which controllers are switched based
on certain rule was proposed. In [9] switched systems
consisting of subsystems with unstable foci were
studied and stabilizing conic switching laws for such
systems were introduced. In particular necessary and
sufficient conditions for asymptotic stabilizability are
derived for such systems. In this paper we study a class
of Second order system about which just a part of
information is known and propose a novel robustly
asymptotically stabilizing switching control law for
such systems. Then we apply this method to problem of
suppressing periodic disturbances. We inject additive
control input whose frequency is the same as the
periodic disturbance into the system and update Fourier
coefficients o and B of additive control pericdically
based on certain rule so as to cancel the periodic
disturbance. Finally the novel algorithin is implemented
with DSP and as applied to real-time active control of
unbalancing vibrations of active magnetic bearing
closed loop system about which just a part of
information is known. Simulation and experimental
results showed that the proposed novel algorithm is
effective for problem of active control of periodic
vibrations and noises for some plants about which just a
part of information is known.

PROBLEM FOMULATION AND SUPERVISOR
BASED SWITCHING CONTROLLER DESIGN
Consider second order uncertain nonlinear discrete time

— 495 —.



system of the following form.
x,(k+ )=(- u,(k +1)cos(B)- u, (k + 1)sin(0))x, (k)
+ (3, (k+ l)sin(e)— u, (k + i)cos(B))x2 (k)
xk+1)= ~(u (k + 1)sin(8) - u, (k + l)cos(B))x, (k)
+(1- u,(k + 1)cos(6) -, (k + 1)sin(0))x, (k)

(1)

where: [x,,x,]" e R%is a state vector with unknown

initial value,, [u,,2,]" € R?is the control input. For

sake of here

[”h“z]T e{-u0 ’"o}x{_“o’"o}- 6

parameter of system (1). The problem is to design

simplicity suppose

is  unknown

appropriate control law [u,,u, I that makes system (1)

globally robustly asymptotically stable. The following
theorem describes the solution of the problem.

Theorem 1

The following switching control law based on
supervisor makes system (1) enter into asymptotic

stable state within at most four steps.

u(k+1)=~u (k)sgn(V(k)-V(k-1))

if k=13,...
w(k+1)=u,(k)

(2a)
uz(k+l)=—uz(k)58"(V(k)‘V(k—wif k=24
w(k+1)=u(k) N

(2b)

where: V(k)=x?(k)+x}(k) . set a appropriate positive

ber to ¥ (0 (x) ! x=20
S = »
num ), sgn(x -1 5 <l
(1) =, or w0, (1) = ~u,, up ()=, or

uy(1) = -1y here, u, is a constant number satisfying

O<y, <l1.

Proof of Theorem 1 will use the following Theorem 2.

So we firstly state the following lemma before proving
Theorem 2.

Lemma 1 If cbe{[a b:l
-6 a

aER,bER} » then

eigenvalues of @ lie all inside unit circle or all on unit
circle or all outside unit circle. If eigenvalues of @ lie
all inside unit circle, then

oD </ 3)

If eigenvalues of @ lie all on unit circle or all outside
unit circle, then

oTd > @)

Proof
Because modulus of two eigenvalues of @ are

same and are equal to va®+b®, then obviously the

first statements of the lemma holds.

] Ta b a® +b? 0
L -
® [—b a} [—b a:i [ 0 a2+b2:l )

If eigenvalues of @ lie all inside unit circle that is

modulus of two eigenvalues of @ satisfy va2+5? <1,

then from (5), obviously (3) holds. If eigenvalues of ' @
lie all on unit circle or all outside unit circle, that is

modulus of two eigenvalues of @ satisfy va®+5* 21,

then from (5), obviously (4) holds. d
Theorem 2

Consider following second order discrete time switching
linear system

x(k+1) = © 0, 5(k) (6)

where
a b .
D& b a ae R, beR,abareunknown;peP,ois a

mapping function which maps nonnegative integer

number {k|k €{012,---} to finite index set
P={12..,N}.
Suppose at least one member belonging to {® p:peP}

is asymptotic stable, then following supervisor based
switching control law:
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alk+1)=0o(k)
alk+1)=0o(k)+1

V(k)-V(k-1)<0

Vk)-F(k-1)20 ™

where, V(k)=xT(k)x(k) . we might as well set

o(l)=1.
at most through N steps can make system (6) switch to
an asymptotic stable system and exponentially
asymptotically converges to equilibrium 0 aleng on the
trajectory of the asymptotic stable system.

Proof of Theorem 2

Suppose o(k+1)=p, ®, is not asymptotic stable, then

from lemma 1, modulus of two eigenvalues of @ are
both larger than one or equal to one, moreover

T
@, 0,2/
holds.

Select Lyapunov candidate function ¥(k)=x" (k)x(k),
then for any x(k)e R?,

Vik+1)=x"(k+1)x(k+1)

3
=x"(k)®T @, x(k)>x"(k)x(k)=V(k) ®

Hence, from (7)

gk+2)y=ck+D+1=p+1
system (6) switches from mode p to mode p+1. So
one can say that provided at the k’th step, o(k+1)=p

and @,, peP is not asymptotic stable, then it is sure

for system (6) to switch.
In addition, because there is at least a member in set

{®,:peP} which is asymptotic stable, we might as
well assume @, gefP to be an asymptotic stable
member, then from lemma 1

¢ D, </
holds. For any x(k)e R*,

Vik+1)=x"(k+1)x(k+1)

r r r (10)
=x"(k)®T @, x(k)<x"(k)x(k)=V(k)

is valid.
From (7), oc(k+2)=c(k+1)=¢g so system (6) does no
switch. Hence one can say that provided at the k’th step,

ok+1)=qg and @, ge P is asymptotic stable, then

it is sure that system (6) does not switch no longer and
will remains at the asymptotic stable member. Since
g s N, so proof is completed. g '

Proof of Theorem 1: Suppose u,,u, take value in set

{~ug,u5}, then system (1) cab be rewritten as discrete

time switching linear system of the following form:
(11}

a mapping function which maps

x(k+1) =B, 0p.x(k)
where ois
nonnegative integer number {klk €{0,1,2,- -}}to finite
index set P={1,2,34}.

o, =l:1-uo(cos(6)+s1'n(9))

uy(sin(®)—cos(9))
— 4, (8in(9) —cos(8))

1—uy(cos(©)+sin(0))

© _Fl—uo(cos(e)—sin(e)) #,(5in(0)+cos(6))
2—_—uo(sin(9)+cos(9)) 1-u,fcos(8)—sin(8))

o _-l—uo(—cos(9)+sin(6)) ~u,(5in(0) +cos(0))
| uy(sin(0)+cos(8))  1—u,(—cos(0)+sin(0))

o _r.1+uo(cos(6)+sin(9)) u,(—sin{9)+cos(0))
o | —uo(—sin(0)+cos(8)) 1+uy(cos(0)+sin(8))

(12)

Define set O, = {9||s,.| <15 €ch(®,),i= 1,2}k eP,

through simple calculation of eigenvalues of ®,(kerP),

it is known that eigenvalues of @,(keP) is either

conjugate eigenvalues or eigenvalues with muttiplicity 2.
So their modulus is just either both larger than one or

equal one or less than one. Moreover sets ©,(keP)
can be given as follows:

O, ={n/4-6,<0<n/4+9, ,

@, ={l7n/4-8,<0<7n/4+8,} (13a)
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@, =Pj3r./4-6,<8<37.14+6,),

©,={l57./14-6, <0 <52./14+6,) (13b)
where 8, = cos™(x, /¥2).

In the case u, <1, it is easy to verify @, 3[0,::/2],
@,o[B3x/222), ©,5[r/2,7},0,>(r3%/2], and
e,ue,ue,Ue, =[0,2z]. Hence,ve,ge[o,zn] , at
least 3k,keP, so that eigenvalues of @, (keP) lie

inside unit circle. eigenvalues of unstable ®, (ke P)

belonging to {d: ‘| ke P} lie either both on unit circle or

both outside unit circle. So from Theorem 2, supervisor
based switching control law (7) makes system (11)
asymptotic stable after at most four steps, that is,
supervisor based switching control law {2a) and (2b)
makes system (1) enter asymptotic stable state through
at most four steps. The proof is completed. O
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Fig. 1 Phase trajectories of system (1), (2)



SIMULATION

In section 2, we used theory of stability analysis and
stabilizing switching logic rule design for hybrid system
to stabilization problem of a class of second order
uncertain nonlinear discrete time system and proposed a
novel supervisor based robustly stabilizing switching
control law and proved that resulted closed loop system
is asymptotic stable. In order to verify effectiveness of
proposed method and robustness against uncertainty of
system parameter ¢ and give intuitive understanding of
the proposed method, for second order discrete time
system (1) with control law (2), in which & takes
different value in[027], a various simulations are
conducted. A few simulation results when & takes a
few representative values in set are shown in Fig.1. The
simulation results show correction of theoretic result
given in section 2.

r Control €
System

Additional Input
Generating Algorithm

Fig. 2 Schematic diagram of periodic
disturbance active control

THEIR APPLICATION--- ACTIVE CONTROL OF
UNBALANCING VIBRATION FOR MAGNETIC
BEARING

Schematic block diagram of periodic disturbance active
control is shown in Fig.2. Where r is additive control
input aiming at rejecting periodic disturbance at output.
Suppose that plant to be controlled is single input single
output linear stable system whose transfer function is
G(s) and correspondingly whose frequency response

G(jw) = A(w)e’® . Here assume that the upper bound of

A(w) is known and equal to A, but no any information
is known about phase properties of system. Now
problem is how to produce appropriate additive control
input r so that steady output of system robustly
asymptotically converges to zero regardless of periodic

disturbance J at output.
Suppose periodic disturbance 4 at output is of
following form (14).

(14)

d = ay sin{wt)+ B, cosler)

Additive control inputr is taken the following
form (15).
r= asin(wt)+ B cos(ax) (15)
Then steady output y produced from additive control
inputr and total steady output of system can be
expressed as (16) (17) respectively.

y = Alasin(wr + 8)+ Beoslar + ) (16)
¢ = Alasin(ar +8)+ fcos(ax + 8))+ a, sin(wr)+ B, cos{e)

(17

Amplitudes of sine component #,(f) and cosine

component n,(s) of total steady output e can be

expressed as
7 (8) = 0.5(4c cos(8) + @, — ABsin(8))
1y (£) = 0.5( 48 cos(6) + B, + Aasin(6))
If we update Fourier coefficients « and g of additive

(18)

control input» periodically with period T in terms of
(19), then (18) can be rewritten as (20).
alk+1) = atk) - (¢ (k + Dy (k) + 1, (k + Dy (1))

1
Bk +1) = k) — (g, (k + Dy (k) + gt (k + 1)n (K)) (19)

ny(k+1)=(1-0.54(u,(k +1)cos(®)+p,(k+1)sin(0))n (k)

+0.5A{ (k +1)sin(0) -, (k +1)cos(8)ny (k)

ny(k+1)=(1-0.54(u,(k +1)cos(8) +p,(k +1)sin(8))n, (k)

—0.54(,(k+1)sin(8)—p,(k +1)cos(8))n(k)

(20)
Corollary

If and only if g, takes number satisfying 0< g, <2/4,

supervisor based switching control law (2a) and (2b)
can make system (20) at most through four steps switch
to an asymptotic stable system and exponentially
asymptotically converges to equilibrium 0. '
Proof: This corollary is directly derived from Theorem
1.

From the corollary it has been seen that the proposed
active control algorithm of periodic disturbance can
make output of system asymptotically converge zero.

Moreover if u, takes smaller number within (0, 2/4),
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the control law can admit larger uncertainty to nominal
gain of system, but maybe reduce decay rate of periodic
disturbance.

Finally we implement the control algorithm with DSP
- and carry out active control of unbalancing vibration for
magnetic bearing experimentally. The experimental
resuits are shown in Fig.3.
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Fig. 3 Experimental results of active control of
unbalancing vibration for magnetic bearing

CNCLUSIONS

In this paper we study asymptotically stabilizing
problem of a class of second order uncertain discrete
time system. This problem arises in periodic disturbance
adaptively suppression problem for system about whose
model information is known just partly. We have
proposed a novel adaptive robust switching control law
using hybrid system control theory and theoretically
proved asymptotic stability of the closed loop system
using the control law. Finally we implement the control
algorithm with DSP and carry out active control of
unbalancing  vibration for magnetic  bearing
experimentally. Experimental results show that effect of
control of unbalancing vibration is better. It has been
verified that the proposed control algorithm is effective

and robust.
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