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ABSTRACT

Active magnetic bearings (AMBs) which suspend
high speed rotor systems present a challenge in con-
trol design. A controller with robustness to uncer-
tainty and capable of adjusting itself according to
the rotor speed is essential. Based on a prototype
for a flywheel energy storage system constructed at
University of Virginia, a convex approach to design a
robust linear parameter varying (LPV) controller is
proposed. As a result, the robust LPV controller can
maintain its stabilizing capability and robust perfor-
mance for the whole speed range. One impediment
for implementing the LPV controller is the compu-
tational costliness. Based on the convex approach,
an effective methodology for implementing the LPV
controller on-line is proposed. Simulation and exper-
imental results are in agreement with the theoretical
derivation.
Keywords: Magnetic bearings, robust, LPV, con-
vex optimization, implementation

1 INTRODUCTION

Magnetic bearings suspended rotating systems
have long been considered a promising technology
due to their inherent advantages over traditional
ball bearing systems. Typically, such a system con-
tains a high-speed spinning rotor which is supported
by active magnetic bearings (AMBs). The con-
trol of the system has never been trivial. Because
of the gyroscopic effects in the spinning rotor, the
system dynamics can change significantly as rotor
speed varies. The gyroscopic effects are linear in
the rotational speed, which results in an LPV sys-
tem model. Different control strategies have been
proposed to address this problem. One is to con-
sider the varying rotational speed as an uncertainty
of the model, as in p synthesis. This method is
effective in constructing good controllers for a spe-
cific speed range, but the performance will deterio-
rate outside this range [1]. Another approach is the
traditional gain-scheduling LPV controller which de-
pends upon a gridding method to deal with uncer-

tainty [2, 3, 5. The gridding method may lead to nu-
merical problems and implementation difficulties. In
[9], a method of formulating unmeasured structured
uncertainty into LPV framework has been proposed.
In this paper, we continue on the work of [9] and
address various issues in controller implementation.
The system is characterized as a convex set speci-
fying both structured uncertainty and the linearly
varying parameter (rotor rotational speed p). The
control objective is formulated as a convex optimiza-
tion problem. The final LPV controller is robustly
stable at each speed and meets the H, norm specifi-
cation at any rotational speed. To make the high or-
der LPV controller feasible in real-time implementa-
tion, several issues have been addressed. An off-line
LPV discretization method is proposed. The expen-
sive on-line discretization is saved and the resuiting
discrete controller performance is comparable with
the continuous time LPV controller.

The remaining part of this paper is organized as
follows. In Section 2, we introduce the model of the
flexible rotor supported on AMBs, which is based on
the test rig constructed at the University of Virginia
(UVa). In Section 3, we present the analysis and de-
sign methodology for robust LPV control. In Section
4, we discuss several issues on the LPV controller im-
plementation and give the off-line LPV discretization
method. A brief concluding remark is made in Sec-
tion 5.

2 PLANT MODEL

The AMB control test rig at UVa is constructed to
simulate a flywheel energy storage system (Fig. 1).
The rotor is located vertically, about 40 1b in weight
and 34 in in length. A thrust magnetic bear-
ing is used to levitate the rotor in the axial direc-
tion. In two radial directions, we use two pairs of
active magnetic bearings to constrain the position
of the spinning rotor. Two pairs of sensors mea-
sure the displacements of the rotor from its geo-
metric center. Thus, it is a four input (bearing
currents), four output (displacements) multi-input
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Figure 1: Schematic of the rotor

multi-output (MIMO) system. In addition, the high
speed rotor displays significant gyroscopic effects and
the dynamic model is in an LPV form, i.e., the sys-
tem matrix is A(p) = Ag + pAp, where p is the
rotor speed. Thus, to take advantage of the LPV
controller design, the rotor speed is also measured
on-line for feedback into the controller. By means

Bote plot for-channal LX—£X

Figure 2: Bode plot for one channel (mathematical
model v.8. experimental result)

of finite element modeling (FEM) and modal test
for rotor dynamics, we construct a nominal system
model with 28 states, 4 inputs and 4 outputs, in an
LPV form [6]. The mathematical model frequency
response matches the experimental system response
very well up to the third flexible mode of the rotor in

the operating frequency range. (Fig. 2). The nom-
inal model provides a good estimate of the complex
behavior of system dynamics, but it is not perfect.
For our robust control design, we have to take into
account the uncertainty of the plant. The following

- structured uncertainties are critical in our system de-

sign:
» uncertainty of natural frequencies
¢ magnetic bearing parameter uncertainty
 sensor and amplifier gain uncertainty
Based on the nominal plant, the uncertainties de-
scribed above can be formulated in a linear fraction
transformation (LFT) form, which results in the aug-
mented plant with a 34 x 34 diagonalized structured
uncertainty block.

For robust control design, effective weighting func-
tions and performance specifications are also indis-
pensable. For our specific problem, we specify the
following objectives:

s disturbance rejection

s noise attenuation

s regulation error minimization
¢ control effort restraint

¢ unstructured uncertainty characterization

Our weighting functions are constructed and tuned
by these criteria. This problem can be formulated as
a weighted H,, control problem. )

3 CONTROLLER SYNTHESIS

Our robust LPV controller design will be de-
scribed in the following steps. We first formulate
the problem as a combination of robust and gain-
scheduled control, then propose a convex approach
for controller synthesis, and finally give the simula-
tion results.

3.1 Problem formulation
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Figure 3: Robust LPV control

The augmented system model can be written as:

(As(0) + pAp)z + Biw + Bau,
Ciz + Dvw + Dyau, (1)
Coz + Doy,

ww on 8-
I

i
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where As(8) = Ag + &A1 +---+ d, A, can be con-
sidered as affine function of the parameter vector
5 = (61,02, -+,6r) € A with fixed coefficient matri-
ces Ag, A1, -, Ar, where A := {(01,02,---,0,): 6; €
{8,,8:}} is the set of structured uncertainty range.
For the robust stability problem, we are seeking a
controller that can stabilize the closed loop system
for any fixed vector & in the predefined uncertainty
range A. Moreover, the gyroscopic part is linearly
dependent on p € (p1,p2) = (0, Pmax), Which is mea-
sured in real time and can be fed to the controller to
optimize the performance of the closed loop system
over the whole range of the rotor speed. All these
properties entail an LPV gain-scheduled robust con-
troller design. Our design objective is formulated as
follows. For any given-y > 0, construct a feedback

law of the form
£, = Ac(p)zc + BC(P)’!J, (2)
u = Cc@)mc + Dc(p):‘h

such that, for each § € A and p € (0,Pmex), the
closed-loop system is asymptotically stable and the
H,, norm of its transfer function from the external
disturbance w to the controlled output 2 is less than
or equal to 4. This problem is a combination of
robust and gain-scheduled control, but can be for-
mulated as convex optimization problem using LMI
techniques.

8.2 Convex characterization
The set of all possible values of § € A and p €
(0, Pmax) can also be described by a convex hull

CO{'Ul,’Uz, e 1Un}
6 n n
={v=(p) eRTt! v=; i, o€(D, 1),§ai=1} ,

where n = 2"+ is the number of vertices. Now con-
sider the mapping from the parameter § and p to the
system matrices. The system matrices also specify a
convex hulj, i.e.,

As(8)+pAp B1 B
(A(g:,p) g) ::( Cy Dy Dy | €Q

02 Dz] 0

= co{(féf g) = (A(Ci,"') g) =1,

Let
Ag = co{A(v;),i=1,2,---,n}.

Each element of Ag can be represented by

2" 21‘
Qpy § :a5iAp1i + Cp, E :aéiApziv
4=1 i=1

where

pz—p P—Dn
Qp, = €(0,1), ap,=—"—€(0,1
P g —-m 0.1 P g —m (0,1)

satisfy ap, +ap, = 1, a5, € (0,1) satisfy 23;1 as, =
1, and Ap, i, Ap,s are constant masrices that depend
on d;, §; and p1, pa. By virtue of convexity, the whole
LPV uncertainty plant Hy control is tractable by
applying H,, control rules to these vertices based on
a convex approach. For a given v > 0, we denote

the H,, controller at a single vertex A(C’i”z‘) g )
as K = Aci Be . The transfer function of
CC!' Dy

closed-loop system at the vertex can be represented
as

Ayi Bui
Tzwi:'G'i(S) = (C D ) ()
v v 3
_ .Ai Bl BQ
- (Cx Dll)+(D12) Ki(C2 D),

where,
A; 01 By |0 Bs
A B B ¢ 0| 0 |I O
(Cl Du D12)1= Ci 0D |0 Do
C; Dn 0 0 I[ 00 0
Cy 0Dy |0 O

The closed-loop system has the following properties:

e A,; is Hurwitz,
e [|Gilloo < -

Theorem 1 Consider the closed-loop system at a
single verter as in (3). Let v > 0 be given. Then
the following statements are equivalent.

1. A,; is Hurwitz and ||Gillee < v/

2. There exists a real motrix P = PT > 0 such

that
PAm' + AuiTP PBut' Cm’.T
( B,,,'TP —')’I DT ) < 0. (4)
C‘ui Dyi “‘“’)’I

This theorem provides a convex approach to ana-
lyzing and designing an H,, controller. For our
system, the parameter d in the plant is unmea-
sured, but p is available on line. Our objective is
to design an LPV gain-scheduled controller which
is asymptotically stabilizing for each ¢ € A at ev-
ery point of the trajectory of p. For the convex
hull @ = co{Api, Apyist = 1,2,---,27} with ver-
tices [Ap, :, Apgiri = 1,2,---,27], we denote the cor-
responding A as [Ay, i, Apyist = 1,2, -+,27]. Dencte
the corresponding common H,, controller for ver-
tices Ap,; and Ap,; as Kp, and K, respectively.
Then the desired LPV robust controller is in the form

K(p) == ap, Ky, + ap,Kp,. (5)

— 479 —



Theorem 2 [9] Consider the conver hull of the
plant ¥ and the feedback control law K(p). the fol-
lowing statements are equivalent:

® Forany 6 € A and p € (0,Pmax), the closed-
loop system is asymptotically stable and |G|} <
Yy

o There ezists a single real matriz P = PT > Q
satisfying (4) fori=1,2,--- n.

3.3 Controller synthesis

Using the Projection Lemma [4] and taking advan-
tage of the convexity characterization, we construct
a real matrix P > 0 in Theorem 2 for all the vertices
of the convex hull, then solve (4) for K, and K,
at the vertices of . The final robust gain-scheduled
LPV controller is (5).

3.4 Simulation

"To confirm the robustness of the controller, we use
& analysis to test the robust stability in face of the
structured uncertainty over different speed points,
For a 3% uncertainty ratio, the nominal performance
is well bellow 1 (our desired « is 1). The g bound
is below 1 for most of the speed range (our designed
speed range is p € (0, 2000) rad/s, (see Fig. 4). When

Mominad Perfonmance pamem {dashed) v.9. mu baunds. (solid)y
T T I T

Figure 4: Nominal performance comparison

we implement the controller on the test rig, it is
successfully levitated. To test the closed-loop per-
formance, we perform Sine-Sweep Test, which im-
poses an external sinuscidal disturbance signal into
the system input, the frequency response is compa-
rable with the simulation bode plot (Fig. 5).

4 CONTROLLER IMPLEMENTATION
We have arrived at an LPV controller, i.e.,

g’ —
y =
One impediment for implementing such an LPV con-
troller is the computational costliness. Assume that

A(p)¢ + By,
Ct + Dy. (6)

&-—m-ﬂuhmn,mkxohmwxwmx-pa
T T T T -

Fraquancy (Hr)

Figure 5: Sine sweep test for one input output channel

the controller is in state £(kT') = & at time kT, while

pt)=px; y(t) =y for KT <t < (k+1)T,

then for t > kT,

t
£(t) = eAPOC-KD)g, | [ / AlpR)(E-) Bd,.] "
kT .

In particular, for Eryr at t=(k+1)T
£k+1 = eA(ph)TEk + [IOT eA(pk)TBdT] Yk, (7)
up = C& + Dys.

Because of the matrix exponential and the matrix in-
tegral, the computation load will increase exponen-
tially with the increase of the controller order and
the sampling rate. Thus, the real time implementa-
tion of such a discrete LPV controller is a challenge,
especially for high order high sampling rate applica-
tions. To fully exploit the rapid developing processor
and memory technology, there are lots of issues that
need to be considered in both software and hardware
respects. These include:

e sampling rate

e analogue-to-digital (A/D) conversion

¢ computer arithmetic (floating or fixed point)
e word-length

® memory requirements

¢ computational delay

We will briefly discuss some issues in our controller
implementation.

4.1 Sampling rate selection and anti-aliasing

In our design, we first design a continuous con-
troller based on the continuous time plant model,
then derive the equivalent discretized digital con-
troller for implementation. Thus, the higher the sam-
pling rate, the better the controller performs. How-
ever, the computation cost also increases because less
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time is available to process the controller calcula-
tions.

Based on the sampling theorem, we would like to
have a sampling rate of over 600 H z, which is greater
than twice the frequency of the second flexible mode
(.fb = 300 HZ). .

Another issue is the effect of the sampling rate on
quantization error, which is due to the finite word
length of the digital computer and A/D converter.
As the sampling frequency increases, the roundoff
noise will be more sigpificant for the same word
length [7]. In our case, we use floating point cal-
culation in our digital computer, so the finite word

length effects on the controller performance is not

significant.

As a general rule of thumb, the sampling rate
ghould be more than 5 times fj, which is 1500 7 z.
In our system, to get better approximation of the
synthesized continuous controller, and consider our
off-line discretization LPV method (Remark 4.2), we
use a sampling rate of 8K Hz.

To avoid aliasing, a low-pass filter, or anti-aliasing
filter is used to reduce the high frequency compo-
nents in sensor signals before the A/D conversion.
From the control aspect, there will be a phase dis-
tortion or a time delay on the filter, which will have
a negative effect on the system performance. We
have two approaches to solving the problem. One
is to use a higher sampling rate, so that the anti-
aliasing filter will have a higher cutoff frequency and
the phase distortion which is strongest around the
cutoff frequency will not affect the sensor frequen-
cies and system performance. The other is to model
the phase delay and take it into account when de-
signing the controller. In our case, we use a second
order Pade approximation of time delays in system
modeling.

For our LPV controller, an external signal (ro-
tor speed p) is sampled on-line to for feedback into
the controller. Ideally, we will sample it at the same
rate as the feedback signal (rotor displacements), but
practically we can lower this sampling rate and main-
tain the stability and performance.

4.2 Tirne constraint on computation

Because the time varying natural of the LPV con-
troller, the controller dynamics need to be refreshed
at each sampling instant. This might be a problem
in real time implementation. Because the computa-
tion for discretization and matrix/vector calculation
is generally too heavy to be completed in single sam-
pling period. However, there are two approaches to
alleviating the burden. One is to refresh the LPV
controller at a lower rate than the sampling rate.
The following theorem follows from a simple conti-
nuity argument.

Theorem 3 For the plant (1) and the LPV con-
troller (5) at any given point p = po, dencted as

K(p), there exists scolar o such that the closed-loop
system with LTI controller K(po) ensures both stabil-
ity and the H-infinity norm bound ~ for any p such
that p € (0, pmaz) and |lp — poll < a.

In practice, the difficulty lies in estimating the
value of @. In our work, we resort to simulation.
Once we have an estimate of the value of a, we can
schedule the trajectory of the varying parameter p,
divide the whole trajectory into smaller zones, and
switch controller between adjacent zones. Thus, we
can discretize the LTT controller for each zone off-line
and save the time for online discretization. However,
this is at the cost of memory requirements. ‘

Anocther method of reducing the computation load
is to do a similarity transformation on the discretized
controller. For our discretized LTI controller K (z),

K(z) Co(zl — A) B + D
= CT(zI -T'AT)Y'T™'B,+ D.

i

where T' is a non-singular similarity transformation
matrix. Thus, the realization of K(z) is not unique.
For a high order controller, on-line matrix/vector
computations can be greatly reduced by increasing
the sparseness of the dynamics matrix. One easy
way is to diagonalize or almost diagonalize A, into
the Jordan canonical form. Then, there will be at
least n? — 3n + 2 zeros in A, of n x n dimension,
so the computation and memory allocation can be
reduced by around 1‘—11‘—3 for large n. However, for
a finite word length digital controller, some round-
off noise is inevitable, this transformation may not
be good at minimizing roundoff noise and coefficient
sensitivity [7, 8]. For our system, we use floating
point representation, this problem is not so signifi-
cant.

For the LPV controller, to update the controller
dynamics, the computation load for on-line dis-
cretization at each refreshing point is almost unre-
alistic for high order controller, because it involves

matrix exponential or matrix inversion. However,

under some assumption, we can reduce the compu-
tation to only matrix/vector multiplications and ad-
ditions, we call it off-line LPV discretization method.
The idea is illustrated hereafter.

For our continuous LPV controller (6), one
method for finding discrete-time equivalent is to in-
tegrate £() as follows:

t
g(t) = ¢(t0) + [ (AW + By,
to
For evenly spaced samples, at t = kT, k=0,1,2,..-

kT+T
E(KT +T) = E(kT) + [k AW + By(e)de

Assume T is very small, set

E(kT) = &k, p(t) = e, y(t) = yi for kT < t<(k+1)T,
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using Euler’s rectangular approximation of the inte-
gral, the equivalent discrete time controller is of the
form: :

{§k+1 =
U =

From our controller synthesis,

(I + A(pe)T) & + BTy,

A(p) = aplApl + ap2Ap2;

where A, and Apy denote the dynamic matrices of
Ky, and Kp, respectively. Then by convexity of our
LPV controller, our discrete time equivalent can be
written as

D(p) := ap, Dp, + ap, Dy, 9

where D,, and D,, are discretized equivalent for K,,
and KCp, respectively.

Remark 4.1 When we use truncated Taylor ezpan-
sion to approzimate the matriz ezponential in (7}, we
will get (8). So the accuracy of our discrete LPV con-
troller synthesis also depends on the norm of A(p).
The lower the magnitude of [[A(p)ll, the better the
approzimation.

Remark 4.2 With our aessumption on small T', ob-
viously, the higher the sampling rate, the better the
approzimation. Butl the computation time for each
sampling point will be less. It is o trade off.

With the off-line discretization method, our compu-
tation load is comparable with an LTI controller. At
the same time, the performance is also comparable
with a regular on-line discretization LPV. Moreover,
the assumption for our method is not a very strict
constraint. Fig. 6 is the performance comparison
between on-line discretization and our off-line dis-
cretization method in implementing the LPV con-
troller. We can see that there is no obvious differ-
ence, but the computation load for our method is
greatly reduced.

5 CONCLUSIONS

In this paper, we presented a convex approach
to design robust LPV controller for active mag-
netic bearing suspension systems and discussed some
issues on implementing the LPV controller. The
robustness and performance of the controller are
demonstrated and several methods to reduce the on-
line implementation cost are given.
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Figure 6: Performance of off-line LPV discretization
method
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