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ABSTRACT

Permanent magnet ring bearings can be used in many
different applications where they must be designed to
have certain force and moment properties. In this paper,
the magnetic vector potential is employed to obtain a
three dimensional analytical solution for axially
polarized radial bearings for analysis and design

purposes. A more general solution for the radial and

axial forces plus the moments is obtained than previous
published works. It requires only a simple numerical
evaluation and is relatively easily carried out with
currently available mathematical programs.  This
analysis extends the method to the operation of the
rings over a large operating range of clearance unlike
other authors who evaluate the forces only at small
perturbations from a centered location. The analysis of
forces and moments are employed to evaluate the
complete 5x5 stiffness matrix in a companion paper to
"Stiffness Analysis of Axially Polarized Radial
Permanent Magnet Bearings,” by Jiang, Allaire, Baloh,
and Wood.

INTRODUCTION

Permanent magnet (PM) radial bearings are becoming
more used in magnetic suspension in industrial devices.
Generally, PM bearings are axially polarized due to the
difficulty of constructing and magnetizing radially
polarized bearings although some advantages are
obtained with radial polarization. It is important to be
able to evaluate all three force components - two
transverse and one axial - as well as two moments - one
about each transverse coordinate axis for multiple ring
configurations. The forces and moments are evaluated
for totor operation over a large range of clearance
unlike other authors who carry out analysis only for
small perturbations about a centered operating point.
This paper is the first of a series of two papers and is
followed by "Stiffness Analysis of Axially Polarized

Radial Permanent Magnet Bearings" [Jiang, Allaire,
Baloh and Wood, 2002] published separately.

Several previous works have developed an
analysis of PM bearings. Many previous works have
used a two-dimensional approximation for the three-
dimensional rings. Yonnet [198la] developed an
analytical solution for a wide range of PM bearings and
couplings based upon a dipole distribution in a bar
shaped magnet for an unrolled configuration where the
airgap dimension is very small compared to the
magnetic cross sectional dimensions. Yonnet [1981b]
also presented another analytical solution for a
distribution of magnetic poles where the ring curvature
is large compared to any of the ring cross-section
dimensions. The magnetic forces and stiffnesses were
obtained between two rings with either axial or radial
polarization. Okuda et al [1984] developed an analysis
of ring permanent magnets and eddy current damping
configurations using equivalent surface currents.
Delamare et al [1994] developed a five axis magnetic
suspension using two axially polarized permanent
magnet rings for radial and moment control of a mass
and one active magnetic bearing for axial control.
Delamare et al [1995] considered several different PM
configurations different from those normally found in
the literature.

Marinescu and Marinescu [1994] employed an
axial-symmetric magnetic vector potential analysis of
residual magnetic flux densities with current sheets to
obtain the radial and axial force as well as radial
stiffness between two PM rings forming a magnetic
bearing configuration, They found that only one
component of the magnetic vector potential, the
circumferential component, is needed for the analysis.
However, they did not consider moments on the bearing.

The purpose of this work is to obtain equations for
all of the forces and moments components for axially
polarized PM bearings which overcomes many of the
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limitations of previous analyses. A magnetic vector
potential is used to evaluate the magnetic field due to an
equivalent current sheet placed in ring form. The self-
energy and mutual-energy of the fields are determined
and then employed to evaluate the force and moment
between PM ring magnets which are near each other.
There are five generalized displacements or degrees of
freedom x,y,z,a, B (not counting the rotational degree)

and five generalized forces F,,F,,F,,M,,M, (not

counting the rotational moment), A fully three
dimensional solution is obtained for ring magnets
which is easy to evaluate using existing mathematical
programs such as Mathematica, This solution is more
general than the previous analyses available in the
literature.

NOMENCLATURE

Main Variable/Function

ab =Stationary and Moving Ring Radius

A =Magnetic Vector Potential Function

B =Magnetic Flux Density

C =Moment Reference Center

F =Force

h =Ring Height

He =Axial Length of Moving Ring Center and
Moment Reference Center

I =Useful Integral Function

J =Current Density

¥ =Radial and Axial Coordinates

M =Moment

s =Polarization Sign (1)

|4 =Volume of Ring

W =Magnetic Energy Function

¢ =Rotational Angular Coordinate (Around z
Axis)

Ho =Free Space Magnetic Permeability

X Wz =Transitional Coordinate

af =Moment Coordinate

7] =Angle between Vector Potential 4, and
Current J,

Subscript

XY,z =Transitional Coordinate

apf =Moment Coordinate

ab =Source Origination (Nominal Position)

b’ =Source Origination (Perturbation Position)

Superscript

! = Perturbation of Coordinate

z =Temp Integral Variable at Height of Ring b

z7 =Temp Integral Variable at Height of Ring a

=Normalized Variable/Function (Bar on Top)

MAGNETIC VECTOR POTENTIAL

Let the three-dimensional magnetic vector potential A
of one PM ring exerted upon the other be defined as
B=VxA where B is the three-dimensional magnetic
flux density. Faraday's equation gives VxB= uJ
where J is the three-dimensional current density in the
current sheet [Jackson, 1999]. The Coulomb gage bold
VxA=0 has been employed in this formulation. We
also have the conservation of magnetic flux density
bold VB=0 . Faraday's law is really three
simultaneous three-dimensional differential equations
to be solved. The differential axial-symmetric magnetic
vector potential at point in space 4 due to current
density J, in ring (sheet) located at a radius a, as shown
in Fig. 1, is

dA_(b,z) ”“JA:' al(z') (1)
where
](Zn)= f’r cos(g,) : dg, (2)

[a* +5% - 2abeos(g,) + (=)' |

in cylindrical coordinates [Krause, 1953]. Here z is
the magnetic permeability of free space. The magnetic
vector potential expression is valid for any type of
magnetization, radial or axial. This is an eHiptic
integral and is rather difficult to integrate in general but
specific values can be obtained using available
mathematical codes such as Mathematica.

The self energy and mutual energy of the static
magnetic field is given by

:ey jAaJ dV mm‘ual

These terms are used to obtain the force and
moment in the following analysis.

jA‘,J,,dV 3)

AXITAL POLARIZATION _

Fig. 2 shows the geometry of the two axisymmetric PM
rings, one of radius a, height %, , current density J,
and the other of radius 4, height A, , current density J, .

In the case of an axially polarized bearing, the full
magnetic vector potential expression is obtained by
integration of Equation (1) with the result

A"y = 2 [T ar e @

where z7 is the ax1a1 coordinate of ring b, as shown in
Fig. 2, and the definite integral 7(z”") is defined as
Equation (2).

The nominal position of the ring & is z=0. The

mutual energy is easily found as the following equation
for the PM magnetic field.
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Wab.2)= [ " (27,64, (6,2) Je"
- ﬂoJ;Jb f"* b[E:::"+h")aI(z")¢"]ﬁT

AXIAL FORCE
The axial force between the two current sheets is

A )

oz (6)
s, “"’[f(z,,+z+h) £z, +2)]

where the functlon fis given by
s@=b M anE Q)

The function f(z) is evaluated to determine the force at
any axial position z in the PM bearing, as shown in Fig.
2. This function is expressed in the form
J.J,
F,(5,,a,2,,h,,8,,b,2,,1,2) == ”02" 5,8, %

9,,: >

(f(a,2,, k0,2, + 2+ )= [(a, 2., 1,0, 2, +2)]
where faz,h,bz) is a function evaluated with
Mathematica or similar code. Also s;~=1 and s=+1 to
indicate the current direction (indicating the PM axial
polarization).

If there are several PM rings, the propertles of
each ring can be expressed in terms of their respective
current rings. Then, the forces and moments are taken
as the superposition of the magnetic vector potential
solution for all of the PM current rings. The numerical
values of the forces and moments are evaluated by the
use of a simple numerical integration over the single
argument, which is numerically stable.

3

®

RADIAL FORCE
When the ring b is displaced radially by a distance r as
shown in Fig. 3, the displaced co-energy is

W 2= [ 8] [ 4,645 cos(O)s, [ 0)
where the length 5 and cos(&) are
b'(r.¢,) = Jb* —2br cos(g,) +1*

cos(6)=\l1 ( TS sm(¢,,j

Define the dimensionless variable as below

(10}

=l 722 729 Z,"E_l.’_ Eagﬁﬂ_ ;_,bsi
b b b b b b an
F(F)=__1_6VK,b.(r,z) K(F)___I_GF(r)
b or b oF

The co-energy function becomes
Walr D)= [0 05 [ 46 2 eos0)as, [
(12)

From equation (11) the radial force can be found as

FEn=[T" Jbb[ [-340 ";)c{’s(g)] d, }f
(13)

Use Taylor expansion for (13) with considerable
algebra, the radial force is given by
F(F)=o(F)+
5 +7+ 24,(1,z7 ’4.(1,z7
J: "“Jbﬂ_—[A(l—T)_ a(_:z )_a ﬂ(—,f )]LET
2t éb' @b
(14)
All non-zero terms are retained up to o(7’) . The
actual terms are evaluated in Mathematica or a similar
code using numerical integration.

ANGULAR DISPLACEMENT AND MOMENT

Moments were not evaluated in previously published
works but they are very important for full evaluation of
PM bearing performance. Consider the small angular

displacement o of the b PM ring as shown in Fig. 4
relative to the a PM ring. Then the dimensionless axial
position of the ring is given by

+sin{a)sin{4, )
=z +asin(g,) + o(’)

The dimensionless radially displaced distance is
determined as

b(a)=

o’
= 1—?sin2(¢,,) +o(a*)
The cosine term is

cos(8) = Jl ~ (sin(@) cos(4, ))2 .
ot a7
=1—?cosz(¢5)+o(a4)

(@) =%"

(15)

1-(Z'(@)-z" )
(16)

The magnetic vector potential becomes

Al '(a),f(a)]—”“——ﬁ {7 bard @), 7 @™

(18)
The co-energy is
W (a z)
Y b[ [ 4,5 @), 2 @)cos(8)ds, ]dET
(19)
The moment induced by this angular tilt is
M ()=~ M 20
da

Expanding this out in a Taylor’s series form gives
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M (a)=o(a’) +

Z, VT +hy
b|

7, +

2 21
Jb zalAn + % —%} dz’ @l
=0

@@y

- where all non-zero terms are retained up to o(e’). The

actual terms are evaluated in Mathematica or a similar
code using numerical integration.

FORCES AND MOMENTS

The final results for the forces and moments have now
been obtained. Each of these terms on the right has
already been evaluated. These terms are then used to
evaluate the PM bearing 5x3 stiffness matrix.

CONCLUSIONS

The general analysis presented in this paper develops a
three-dimensional magnetic vector potential analysis of
axially polarized ring permanent magnets.  This
analysis is applied to axial and radial translational
displacements as well as angular displacements to
evaluate the bearing forces and moments as a general
function of axial position z and radial position r. Ring
symmetry properties have been inchided where
applicable. The formulas obtained in this paper can be
evaluated using standard commonly availabie
mathematical packages. This paper provides the basis
for the extension to full stiffness matrices for PM rings
as given in the companion paper Jiang et al [2002].
There is good agreement between an example radial
bearing as presented in the companion paper and the
results by Marinescu [1994]. Two additional example
cases are presented in the companion paper.
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FIGURES

FIG. 1: Vector Potential for a Current Sheet
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FIG. 2: Geometry of Two PM Rings Acting Upon
Each Other

FIG.3: Radial Displacement of PM rings
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