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ABSTRACT

This study proposes a nonlinear adaptive output feed-
back type backstepping control for a zero power mag-
netic bearing system to achieve a better performance.
Recently, integrator backstepping control has become
popular in magnetic bearing control system design due
to handling nonlinearities without any cancelation. On
the other hand, the backstepping control is essentially
a state-feedback control approach and requires full
states of the control system. Since only the displace-
ment of the rotor is measured in a magnetic bearing
system, the numerical differentiation of the velocity
from the displacement degrades the performance of the
integrator backstepping controller in implementation.
An alternative way for the controller design, nonlinear
observers are introduced and unmeasured state is es-
timated using the observers. Morecver, the magnetic
force coefficient is treated as unkmown constant pa-
rameter and an adaptation procedure of the unknown
parameter is formulated. The proposed control is ex-
perimentally verified for a flywheel magnetic bearing
system and obtained good results.

INTRODUCTION

In recent years, development of high efficient and clean
energy storage systems become an important research
topic due to environmental problems. Flywheel energy
storage systems which store rotating kinetic energy by
high-speed rotation have promising future because of
cleanliness and high-density energy storage. It is im-
portant for a flywhee! system that windy loss and bear-
ing loss of fiywheel are reduced in order to keep electric
power for several hours. One of the aims of this study
is to investigate the applicability of the low power con-
sumption active magnetic bearings to fiywheel energy
storage systems. Basically, an active magnetic bear-
ing provides support of a rotor using electromagnetic
forces without any mechanical contact. An online ac-
tive control system is necessary 10 maintain the sta-
bility due to instability of the rotor-magnetic bearing

Atsushi Kubo, Ryouichi Takahata

Research and Development Center
Kdyo Seiko Co. Ltd.
333 Toichi-cho,Kashihara
Nara 634-0008, Japan.

in open-loop. Although a frictionless suspension is an
advantage of the AMBs, the power consumption and
energy loses may not reduced easily. In conventional
AMB systems, a constant bias current is introduced
into the coils of the AMB to obtain a linear model. A
source of the losses in a magnetic bearing system is the
bias current itself. Due to generating a constant mag-
netic field for the active control, the bias current leads
to eddy current and rotational losses much larger than
the nonlinear control. Moreover, the magnetic force
coeficient is not truly identified and has likely a varia-
tion during control operation of the magnetic bearing.
It is expected that a reliable adaptation of the mag-
netic force coefficient as a unknown parameter might
increase control performance.

Nonlinear control of the active magnetic bearings
has been previously studied using different approaches.
In reference [1], a nonlinear control approach is pro-
posed using differential flatness. As a control design,
the nonlinear integrator backstepping control (2] has
attracted much attention to solve control problems for
active magnetic bearing applications [3]. In this study,
a nonlinear control structure is defined for a single axis
magnetic bearing and then a adaptive control design
is presented using backstepping approach with exper-
imental verifications.

NONLINEAR CONTROL STRUC-
TURE :

The nonlinear control defined here is to switch the con-
trol current of the electromagnets of an active mag-
netic bearing according to the rotor position. As a
difference from the linear control, no bias current is
employed in the proposed nonlinear control. In an
attractive type bearing configuration of a pair magnet
shown in Figure 1, when the rotor approaches to one of
the magnets, the coil current in the approached side
magnet switched to zero while opposite side magnet
has a current flow to generate attractive force. The
switching process continues until the rotor is brought
to the origin where the stability is provided. Since the
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origin is zero axis for the rotor, the required power is
theoretically zero if the rotor is suspended at the ori-
gin. If the coil current is assumed to be the control
input, then the nonlinear equation of the rotor-active
magnetic bearing system for a one degree-of-freedom
shown in Figure 1 is derived as

i2 i3
051ﬂ2—@%+xﬁ] (1)

Mi=K|

where M and K are the mass of the rotor and the
magnetic force coefficient, respectively. 4; and i, are
the control currents. X, denotes the air gap. The dy-
namics of the electrical part of the electromagnet is ne-
glected because the coil current of the each electromag-
net is assumed to be controlled by a high-bandwidth
current loop. In most industrial use active magnetic
bearing system, to drive the coil with such a cur-
rent loop is common and eliminates the dependence
of performance on the electromagnet coil resistance
and inductance [4]. Using the variable transformation
T1 = £, Ty = &, the second order system is obtained
as
£ =T

n=[os@) —omE@][u] @

Yy=x

where u; = i and up = i} are the control inputs. The
output is represented by y. The unknown parameter
¢ and the nonlinear functions ) and 3; are defined as

K 1 1
=15 Bi(z) = Toa)® B2(z1) = W
' 3
Note that the nonlinear functions §; and gy are strictly
positive functions of the state z;. It seems that the
equation (2) has multi-input structure but in reality
only one control input is effective at any time depend-
ing on the rotor position such as

:i'.,l =T2
i’2 = Bﬂu
y=mz
120 u=w;, w=0 B=-0(x)
T3 <0 u=w, u=0 g=0(xn)
(4)
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FIGURE 1: A single axis rotor-magnetic bearing

OBSERVER BACKSTEPPING

Nonlinear Observers

In practice, only the displacement of the rotor is mea-
sured, and the velocity is not available for the feed-
back. To estimate the unmeasured state z2, an ex-
ponentially convergent observer is introduced into the
control system such as

£ =€+ 600+ kx; (5)

where £ and { denote the states of the filters. Also,
k is a positive parameter. The first filter is for the
part of the plant that does not contain the unknown
parameter @ and the second one is for the unknown
part of the plant. The filters are defined as

£ = -kt — Kz
{ = —k(+ Blx1)u
If the initial conditions are £(0) = 0 and ¢(0) = 0,

then it is guaranteed that the estimation error ¢ expo-
nentially converges to zero such as

(6)

oz
€= — £ —06(— ki ™
= k(£ + 8¢ + kx1) - kzy '

= —ke :

Control Development

The control system structure given in the equation

- (4) falls into a class of nonlinear strict-feedback sys-

tem and involves a nonlinear control system design ap-
proach such as backstepping. Basically, backstepping
is a recursive control design approach which consider
the some of state variables as virtual controls in ev-
ery step of the design. In general, the objective of the
control is to track the reference y.(t) with the system
output y(t). The tracking error is defined as

21 =Y—Yr (8)

The derivative of the z; is obtained as
=2 — Yr ( )
Since z, is not measured, the estimate of it will be

used. Now substituting the equation (5) into (9), the
derivative of z; becomes

fH1=(+600+kzi+te - (10)

Note that the reference input ¥, is zero for the rotor
magnetic bearing system. In the equation (10), the
only variable that contains control input  is the vari-
able {. Thus it may be used as virtual control for the
second error variable such as

(11)

Zp=(—m
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The stabilizing function ¢, is chosen as

oy = pl—erz1 — dizy — kz — §) = péa (12)

where ¢; > 0, d; > 0. Note that to eliminate the
variable ¢ in the equation (10), the stabilizing func-
tion a; is multiplied by p which is an estimate of the
parameter p = 1/8. Moreover, as a difference from
the integrator backstepping procedure, d is added to
counteract the estimation error e. Now, the derivative
of z; becomes

2 =6+8(za tog)+ ko +e
= ¢+ 0(z2 + pay) + ko +€
=E+0[z2+ (p—p)a) +kzy+e
=022 —-C121 —d121 —3ﬁ@1+6

(13)

where p = p — . Here j denotes the error in the es-
timation of g. For the first error variable, a candidate
of Lyapunov function is defined as
1 1 1
Vi=-22+—0(p—p)* 2

where 7 is the adaptation gain. The derivative of V1
is obtained as

(14)

. 1 . 1
V= zi — 20n— 54 e
1 =214 WG(P p)p+ w <

. o 1 -
= 82122 - 612’% - B(p - p)(a121 + :‘/‘P)

1\ 1 1
—-d I 2 L2
1(21 2[’.16) +4d1€ d]e

—dyzi+ze

< Bz1290 — clzf - G(p— ﬁ)(ﬁlzl -+ %p") - 13—162
(15)
The 8(p — p) term in the above inequality can be elim-
inated using the update law as follows:

p=—narzn (16)

Since the term @z; 2; remained in (15) , a global stabil-
ity condition is not satisfied in this step. The second
step is to expend the control design to include the error
variable z,. For this aim, the derivative of the second
error variable is obtained as

2y =(—éy (17)

Here, the stabilizing function a; is a function of y, §
and p, therefore, the derivative a; is obtained as

6a1 . 3(!1 : 6a1 A

ay = a—yy+a—£§+ ‘55}3 (18)

Substituting the equations (6) and (18) into the equa-
tion (17), the derivative of z; becomes

2= —C+ Bl = FHE+ O+ km +9
O

23

(19)

6a1

(—kf + kzl'l) - a—ﬁfj

The equation (19) is not desired form because the un-
known parameter # appears. Moreover, the distur-
bance ¢ is multiplied by the nonlinear term 3—;—1. To
employ nonlinear damping and to. eliminate the un-
known parameter, the equation (19} is equalized as
follows:

2 ,
—c222 — Bz —da (?—Cﬂ) 23 — Q»a—]e - ?%é =

Bya 8y F)
—k( + O(z)u - ai;(uac +kzy +€)
81 e ko) - 9
—-.52"( k¢ k*zy) 3p

(20)
where 0 is the estimate of the unknown parameter 8.
Also,  represents error in this estimation. From the
equation (20), the control input u is chosen as

U= —1- [—622'2 - d2 (%).222 - 921 + kc |
Bou e g 0o e p2g) 4 005
+8y (E+0+kz) + 35( k€ — k1) + aﬁP]
(21)

Substituting (21) into the (19), the derivative of zo
becomes o

. 8a1 2 ~ 3a1 = 6a1
23 = —Ca22 dg( 8y ) 2y — (3 9)2’1 Fy—ac ay €
(22)

The Lyapunov function is augmented for the second
error variable z as follows

1 1 - 1
Vo=Vi4+ =22+ —(8— ) + —¢ 2
2 1+222+2,Y( ) +2kd26 ( 3)
The derivative of V3 is derived as
. . , 1 - 5 1
Vo=V + 228y — —(8 — 0)0 + €€
¥ kdz .
da 1 1
_ 2 __ 2 _ 1 _ 2
= —C12{ — C223 ds (——ay 22 _2d2 E) +_4d2€

D
1 3
202

dy 4d,; a 1
N a ;
< —c12? —cyz +(0-9) (Z1Z2 - a—;(zz - ;9)

— i + i 62
4d;  4d;
(24)

where ¢z > 0,dz > 0. The unknown part of (6 — 8} in
the equation (24) is eliminated using the update law

6= ")‘(2132 - %%lczg) (25)
It is clear that a global stability is maintained in the
final Lyapunov function. Now, the control currents
i; and iz can be computed from the control input u
obtained in the equation (21).
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FLYWHEEL ROTOR-AMB SYSTEM

A vertically designed five axis controlled active mag-
netic bearing system shown in Figure 2(a) is used for
modeling, simulations and experiments. The AMB
. system which is manufactured by Koyo Seiko Corpo-
ration Ltd., Japan, is consists of a main AMB spindle,
a control unit and a high-frequency inverter. The pa-
rameters of the rotor-AMB system are given in Table
1. A separate test system which is placed in a vacuum
chamber by mounting an 8 kg CFRP flywheel to an
identical AMB system is also available for rotational
experiments. In this study, the rotational tests are
realized using the test system given Figure 2(a).

(a) (b)
FIGURE 2: The rotor-AMB system
(a) without flywheel (b) with fAlywheel

Is

Sensor

FIGURE 3: Rotor-AMB system

TABLE 1: Parameters of the rotor-AMB system

Symbol  Value Unit

M 4.85 kg

Ir 2.90 x 10=2  kgm?

In 222x1072  kgm?

Ly 4166 x 1072 m

L 7602x10°2 m

I 16.28 x 10-2 m

K. 447x 1078 Nm2/A% -
K 3.10x 107 Nm?/A?
X0,Yp 025x107% m

Model of the Rotor-AMB System

It is supposed that axial and radial directions are sep-
arated and the dynamics of the rotor may be inves-
tigated independently in both directions. Since axial
direction is controlled with a PID controller, only the
radial directions will be modeled for a control design.
Note that only the rigid modes are considered due to
small size of the rotor. The equation of motion of the
rigid rotor-active magnetic bearing system depicted in
Figure 3 is derived as

Mi, = (Fy - F) + (F5 - F)
1.8y = (F1 — F3)l, — (F5 — Fy)y
My = (Fy — Fy) + (Fs ~ Fy)
Irez = _(F2 - F4)lu + (Fﬁ '"'FB)II

(26)

where z, and y, denote the displacement of the rotor’s
center of mass. Similarly, 8, and 6, are the angular
displacement of the rotor around r and y axes. B,
F;, F3, and F; denote the electromagnetic forces for
the upper bearing in x and y directions. Similarly, 3,
Fg, F7, and Fy show the electromagnetic forces for the
lower bearing. For z direction, the upper and lower
bearing forces are given as

K3 K i
F = %1 = v
. (Xo ~ 2,)? ’ B (XO + z,)? (27)
F K,i§ K;i%
5

T Ko —z)? Fr= (Xo + z;)?

The electromagnetic forces have the same structure
with different indices for the lower and upper bearings
in y direction.

Collocated System Transformations

The equations of motion obtained in {26) are derived
according to the movement of the rotor’s center of
mass. On the other hand, the measured signals are
the displacements of the rotor at the lower and up-
per sensor locations. In the above rotor~-AMB system,
four position sensors are located near to the upper
and lower actuators. Since sensor locations are dis-
tinct from the mass center, the computation of the
displacements of the rotor’s center of mass and angu-
lar displacements are necessary during control opera-
tion. In this study, it is aimed to form a direct corre-
lation between measured outputs and control inputs.
Instead of computing the displacements Zg, Yy, 0y and
8., the computation of the displacements of the rotor
at the magnet locations makes the control system col-
located. For this aim, dynamics of the rotor may be
transformed to the actuator locations as follows:

Yu =Yy — tuez
v =y + b,

Ty = z;,, +1.0,,
T =Zg — l;By,

(28)

where z,, and z; show the displacements of the rotor at
the upper and lower actuator locations in z direction,
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respectively. Similarly, y, and y: denote the displace-
ments at the actuator locations in y direction. Taking
the double derivative of the above equations and sub-
stituting the equation (26) and (27) into the obtained
derivations, the collocated system equations are de-
rived as

N i N i3 ]
N.?Cu = Qulry (X() — Iu)z (X0+$u)2
i2 z2
we — K 5 _ 7
nsa ‘[(Xo —z)?  (Xo+ $1)2]
\ , (29)
i i
Y [(Yo “3? (o +ua)
i2 i3
C ok & 3 H ]
v =t [(Yo -y (Yo+wm)]
where
1 2 1 17
ay = (—]\7 + I_r) a = (M + }:) (30}

The state-space model of the control system is ob-

tained as
X1 017 Xl 04><8 ]
= o
(5 1=[0 o] (% ]+elam v
(31
where
XT=[zu ot vu @ ];
XT=£zu T Yu yl] )
UT=[U1 Uz U5 U7 U3 ’U4: Us Ug ]T
(32)

Controller Design

Since the equations (29) are independent of each other,

the controller design can be done separately using

these equations. The design procedure is completely
same as defined in previous section.

CONTROL VERIFICATIONS

Simulations

The simulation results are obtained using the state-
space model obtained in (31). Figure 4 shows the re-
sponse of the rotor for a 0.1 mm initial step reference
input. The rotor is perfectly brought to the origin by
the nonlinear adaptive control. The control currents
are shown in Figure 5 for the same step reference in-
put. Since simulation is representing an ideal case,
the control currents converges to zero after the rotor
suspended at the origin. The value of the control Lya-
punov function and estimation error converges to zero
as shown in Figure 6. The estimated parameters j§ and
8 are also shown in Figure 7.
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FIGURE 4: Step reference response
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FIGURE 5: Control currents
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FIGURE 6: Lyapunov function and estimation error
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FIGURE T: Estimated parameters

Experiments

A feedback control system is established with a dig-
ital signal processor(TMS320C40) to realize experi-
ments. The control system is a multi-input multi-
output structure with four displacements measured by
four eddy-current position sensors and eight computed
control current signals for actuators. The control in-
puts are supplied to electromagnets through D/A con-
verters and power amplifiers. For non-rotating condi-
tion of the rotor, the transient response of the control
system and the convergence of the adaptive controller
are shown in Figures 8-9. The experimental results in-
cline the simulations in general. The control currents
for the upper bearing in the x direction is shown in
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Figure 10 for levitation case. Note that the control
currents are multiplied by an amplifying factor such
as Ky = 1500 since the control currents obtained in
simulations(Figure 5) is quite small to levitate the ro-
tor. Rotor dynamics at critical speeds has considerable
effect on the control currents as shown in Figure 11.
At higher rotational frequencies, the rotor is balanced
with imbalance forces and only one electromagnet has
current flow as seen in Figure 12. The locus of the
rotor for different rotational frequencies are presented
in Figure 13.
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FIGURE 8: Step response
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FIGURE 9: Online parameter estimation
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FIGURE 10: Control currents (w = Q)
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FIGURE 11: Control currents (w = 20 Hz)

Control current Control current
N ‘ H
08
—~ 08
«
o 04
02f - s i
O N N N u N :
0 0.2 0.4 06 0.8 0 02 2] 06 08
Tima(s] Time [$ |

FIGURE 12: Control currents {(w = 100 Hz)
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FIGURE 13: Locus of the rotor
CONCLUSIONS

In this study, a low energy consumption AMB system
is realized using a nonlinear adaptive control approach.
One of the important properties of the proposed con-
trol is the complete on-off structure of the control cur-
rents. While one side of the pair magnet has a current
flow, the other side has always no current flow any-
more. The on-off structure of the control has no dete-
riorating effects on the stability of the control system.
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