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ABSTRACT

In the control of magnetic bearing systems, it is
known that there is a conflict between performance
enhancement and power-loss reduction, which is di-
rectly related to the biasing level. In this paper, we
first propose a general framework to coordinate the
transient performance and the steady state perfor-
mance. Then we apply this framework to handle
the conflict between fast convergence rate and low
biasing level. Our study is based on a linear model
which is obtained by using appropriate nonlinear cur-
rent allocation strategy. Our theoretical results are
verified on an experimental system, a beam balanc-
ing test rig, which consists of a beam free to rotate
on a pivot at its center of mass, and stabilized by
electromagnets located at both ends of the beam.
Keywords: Magnetic bearings, stabilization, cur-
rent biasing, control performances

1 INTRODUCTION

This work is intended to develop a systematic de-
sign approach to the control of magnetic bearing sys-
tems by using a simple experimental setup at the
University of Virginia. Active magnetic bearings
(AMB) have several appealing advantages over tra-
ditional bearings, such as very low power-loss, very
long life, elimination of oil supply, low weight, reduc-
tion of fire hazard, vibration control and diagnostic
capability[l]. They have been untilized in a vari-
ety of rotating machines ranging from artificial heart
pumps, compressors, high speed milling spindles to
flywheel energy storage systems.

The experimental system to be studied in this pa-
per is a beam balancing test rig (see Fig. 1). It
consists of a beam free to rotate on a pivot at its
center of mass, and stabilized by electromagnets lo-
cated at both ends of the beam. This experiment
mimics the dynamics of a single axis AMB system
yet is quite simple from a mechanical viewpoint. It
has attracted significant interest. Two invited ses-
sions were organized at 2000 ACC[8, 9]. Partici-
pants of these sessions examined various aspects of

Figure 1: The beam balancing test rig.

this benchmark system.. More recently, in [5], we
attempted to characterize the relationship between
several performances and the biasing level through
numerical optimization method. ’
The dynamics of the beam can be modeled by the
following differential equation (see, e.g., [3]):

Ji=—-Dé+T,-T +d, (1)

where the variable 8 is the angle between the beam
and the horizontal direction. T} and T: are the
torques generated by the two electromagnets and d
is disturbance due to unbalance or other unknown
sources. The total torque provided by the electro-
magnets is T := T3 —T;. The system parameters are:
J - the moment of mass, and D - system damping
due to air and pivot friction.

The torques are determined by the currents I; and
I in the two circuit systems through the following
relation:

9ol \* 90l \
fi=cu (gn+9) » Te=en (90—9) ’
where gp is the maximal angle which is reached when
one end of the beam touches an electromagnet. ¢
and ¢ are constant parameters. In this work, we
adopt the current mode, i.e., the control inputs are I;
and I». For simplicity, we assume that ¢;; = ¢z = ¢;.

Different magnetic bearing systems can be mod-
eled similarly to the above balance beam system. For
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example, [10] considered a rotor whose one dimen-
sional position is controlled by a pair of electromag-
nets. The model in [10] is mathematically the same
as the one in this paper. If we have several pairs of
electromagnets, then the whole system can be broken
into small components similar to the above model,
possibly with some couplings,

Traditionally, a bias current I is introduced in the
currtent mode such that Iy = I, —Tand I, = I + 1,
where [ is used as a control input to produce a net
torque. Using bias current makes the system eas-
ier to control but has the drawback of increasing
power-loss. Much effort has been made toward re-
ducing the bias or the power consumption (see, e.g.,
(2, 4, 7, 14, 15]). Recently, we made some effort
in (5, 6] to reduce the power-loss by characterizing
the relationship between the bias current and several
performances. It was found out that decreasing bias
current would reduce the achievable performances
and slow down the convergence rate. In particular, it
was shown in [6] that decreasing bias current would
reduce the size of the largest possible stability re-
gion. These results were verified experimentally. For
example, it is very easy to stabilize the beam with
Iy = 0.5A, it is harder to stabilize it with I, = 0.2A4
and we never succeeded to do the stabilization with
Iy =0.14.

In this paper, we propose a new design and control
approach that will coordinate system performances
and low power-loss (low biasing level). We first ad-
dress a general problem of coordinating transient and
steady state performances in Section 2. In Section 3,
we apply the results in Section 2 to handle the con-
flict between fast convergence rate and low biasing
level. We will replace the conventional linear relation
I =Iy—-1 and I = I + I with a nonlinear one

go+ 6
90 ’

which results in an exact linear dynamical relation
between & and I and simplifies the design signifi-
cantly. Experimental results show that this design
approach is very effective. In particular, we success-
fully stabilized the beam with J; = 0.1A4. In fact,
the beam will reach the balance position no matter
what the initial condition is.

Notation: For a vector u, the infinity norm of
u i8 ||u]lcc = max;|u;| and the 2—norm is ||u|| =
(X, uf)k. We use sat : R™ — R™ to denote the
standard saturation function of appropriate dimen-
gions. For u© € R™, the ith component of sat(t) is
sign(u;) min{1, fui|}.

—8
L=(-n2—",
g0

L= +1)

2 COORDINATION OF TRANSIENT AND
STEADY STATE PERFORMANCES

As we will see later in this paper, the problem
considered in this section is motivated by the con-
trol of magnetic bearing systems. It may also arise

from other control systems. Here we formulate the
problem into a more general framework.

2.1 Parameter-dependent Linear Systems
Consider a parameter-dependent linear system

& = (Ap +pAi)z + (Bo + pB1)u, z € R", u € R™,
(2)

subject to input saturation and state constraint:
lulloo < 1, z € X,

where p is a scalar that can be adjusted on line. (The
results in this section can be easily generalized to
the case where 4 = Ay + p1A; + paAds + --- and
B = By +p1 By +p3B; + ---. We only consider
the scalar case for simplicity). The state constraint
set X, is generally some polytope determined by a
matrix G € R7*" as follows,

X.={z€R™: |G|l <1}.

When applied to the magnetic bearing system in
this paper, p is the bias current I or the bias flux
¢p. It is known that large 1 is good for fast tran-
sient response and small I, is necessary for low power
loss. To achieve fast transient response as well as
low power loss, we may try to change I, or the pa-
rameter p for a general system (2), according to the
location of the state . A straightforward solution
seems to be using a p and a corresponding controller
that is good for transient response when ||z|| > ¢
for some positive number ¢, and use another p and
its corresponding controller that is good for steady
state performance when }z|| < ¢. However, we must
answer two questions: How to guarantee closed-loop
stability and how to make the transition smooth? In
this section, we will present a design scheme that
would coordinate the trangient and steady state per-
formances.

Let p: be the parameter p that is good for tran-
sient response and let p, be the parameter p that is
good for steady state. The main idea is to let p vary
continuously between p; and p,, such that under the
control of u = F(p)z, the trajectories starting from
a given set of initial conditions will converge to the
origin with satisfactory transient responses.

Suppose that all the possible initial conditions of
the system (2) is in a bounded polytope, described
by the convex hull of a set of points x1q,Z2g, ' - Te €
R"™. To state the stability and performance require-
ments for systems subject to state and input con-
straints, we need some notation.

For a general system & = f(z,t), the convergence
rate can be defined in terms of a quadratic function
V(z) = ™ Pz for a positive definite matrix P (P >
0). Let z(t),t > 0 be a trajectory. The convergence
rate along the trajectory is

t> {)} .

: V(z(t) .
mf {—m :
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Consider a closed-loop linear system ¢ = (A+ BF)z.
The convergence rate is the largest positive number
a such that

(A+BF)"P+P(A+BF) < —aP.  (3)
For P > 0, denot.é
E(P):={zeR": z"Pr<1}.
For a feedback matrx F' € R™*", denote

LF):={z€R": |{|Fzllo <1}

2.2 On Maximizing the Convergence Rate
Consider a linear system

&= Ar+ Bu, z € R", ue R™, (4)
subject to input saturation and state constraint
Bulle €1, IGE)leo < 1.

We would like to maximize the convergence rate by
using a linear state feedback u = Fr that satisfies
the control bound. To ensure that the control bound
||Fzilco < 1 and the state bound |Gzl < 1 are sat-
isfied and the maximal convergence rate is achieved
for the whole trajectory, we need to construct some
invariant set inside the region L(F)NL(G). If P sat-
isfies (3) and £(P) C L(F), then £(P) is an invari-
ant set, which means that all the trajectories start-
ing from inside it will stay inside. At this point,
we need to ensure that the ellipsoid £(P) include
all the initial conditions oy, Zoz,Tos, -+ *, Which are
the vertices of the given set of initial conditions.
In summary, we need to find P and F such that
To1, %oz, Tz, -+ € E(P) C L(F)N L(G) and the con-
vergence rate « is maximized. This can be formu-
lated as the following optimization problem:

sup o (5)
P>0,F
st. o) (A+BF)"P+P(A+BF) < ~aP
b) £(P) C L(F)NL(G)
¢) Zo1,Zoz,Tos, - € E(P).
The above optimization problem can be exactly

transformed into an LMI problem and be solved ef-
ficiently.

2.3 Coordination of Transient Performance
and Steady State Performance

Our controller design is based on the following re-
sult:

Proposition 1 Consider the closed-loop system

z = (Ag + pA1)z + (Bo + pBy ) Fx. (6)

Suppose that p is a time varying parameter that Lakes
value between p; and p,. Let P be a positive-definite
malriz satisfying

(Ag+ BoF)"P+P(Ag+BoF)
+p: (A1 +BF)"P+p, P(A1 +BF) <-asP (7)
(Ao +BDF)TP+P(AU +ByF)
+ps(A1+B1F)*P+p,P(A1+B1F) < —a,P (8)

for some ay, a5 > 0, then all the trajectories will con-
verge to the origin with o convergence rate a between
a, and ay.

If F and P satisfy the conditions in Propositien 1,
then the stability of the closed-loop system (6) is
ensured no matter how we change p between p; and
p,. For good steady state performance, we should
have p = p, as ||z]| = 0. For fast convergence rate,
we need to set p close to p, when z is away from the
origin. For smooth transition, we need p to change
continuously. In view of these points, we propose the
following function of p

b= (1 - )\)ps +Apy, A= Sa't(k”z")v

where k is used to adjust the transient response: For
those r where k||z|| > 1, we have A =1 and p = p¢.
Asz — 0, A — 0 and p = p,. We note that k should
not be too large due to the possible dynamics in p.
One design approach based on Proposition 1 is to
fix a, and maximize o,. Of course, we also need to
ensure that g3, Toz, Zos, - € E(P) C L(F) N L(G).
The optimization problem can be stated as follows:

sup oy (9)
P>0,F
st. a) (7), (8)
b) E(P) C L(F)N L(G)
C) To1,Tp2,T03,° " € E(P)

In a special situation where By = 0, we can de-
sign a parameter dependent feedback law for further
improvement of the transient response.

Proposition 2 Consider the open-loop system
T = (Ag + pA; )z + Bou. (10)

Suppose that p is a time varying parameter that takes
value between p, and p;. Let P be a positive definite
matriz and Fy, F, € R™*" be two feedback matrices
such that

(AO + BoFt)TP + P(Ao + B()Ft)

+pATP + pi PA; < —ayP  (11)
(Ao + BOFs)TP + P(Ao + BoFy)

+ps ATP + p,PA; < —a,P (12)
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for some ay,04 > 0. Denote H, = F;P~1 H, =
F,P71 and F(p) = (F2eH, + WP H,)P. Then
Jor the closed-loop system

z = (Ao + pA1)z + BoF(p)z, (13)

all the trajectories will converge to the origin with a
convergence rate o between a, and ay,

One design approach based on Proposition 2 is
also to fix o, and maximize a;. Since we use dif-
ferent feedback matrices F, and F; for p, and p;,
it is expected that the maximal o, will be greater
than the case of using a constant F. The optimiza-
tion problem corresponding to Proposition 2 can be
stated as follows:

Sup oy (14)
P>0,F

st a) (11), (12)
3 £(P) C £(F)NL(G)
€) To1,Zoz, %03, € E(P)

3 THE LINEAR DESIGN APPROACH

The dynamics of the beam balancing test rig under
the current mode can be modeled by the following
differential equation,

5 ; oh \* (90I1 )2
J8=-D0+ - - = , (15
q((yo—ﬁ) go+8 (15)

where g is the maximal angular displacement which
is reached when one end of the beam touchs the elec-
tromagnets. So we have |9] < gp. In the current
mode, we assume that [; and Iz are the control in-
puts that can be exactly generated.

3.1 A Conventional Current Biasing Strategy

In (15), the currents appear in the form of I? and
I2, which are highly nonlinear for a control system.
A conventional way to reduce this nonlinearity is to
introduce a bias current I, and let I; and I, operate
symmetrically around I3, i.e.,

L=L+1I, L=1I-1, (16)

where I is used as a control input that produces a
net torque on the beam. With I; and I, determined
from (16), the dynamical relation between the input
I and the output € is,

L goll—D\* ool + 1)\

Jﬂ-——D9+Cc(( % -0 ) "( g0+8 ))
(17

(0,0), we obtain

Linearizing the system at (,6) =

[8]-[ s (50 8alr e

Dencte z = [ 6 8 ]T

0 1
AL = 4y Iiz D

0
_D ]:BL=[ —dc Iy ]s
Jgo J

J

then & = Azx + By I. This linearized model approx-
imates the nonlinear system (17) very well when ¢ is
close to zero. When @ is close to gp, the nonlinear-
ity gets stronger, which usually cause the beam to
stick to one of the electromagnets. We notice that
the linearized system (18) has an unstable pole since
det(Ar) < 0. As we have discussed in [6], under
the input constraint |I| < I, and the state constraint
|8] < go, the largest possible stability region that can
be achieved for system (18) is a strip (see Fig. 2 for
the largest possible stability regions under different
bias currents I, = 0.1,0.2 and 0.54). The feedback
laws that actually achieve the largest stability region
have the following form:

I = Iisat{vFpz), v>1,

where

Fo=—=[ M =X ] (19)

4c12

and A; > 0, Ay < 0 are the eigenvalues of Az.

Figure 2: The largest possible stability region under
different bias currents

As we can see from Fig. 2, the stability regions
grow larger when we increase the bias current. With

= 0.1A, the stability region is a narrow strip. This
makes it very difficult to stabilize the beam at the
balance position since it is hard to set an initial state
exactly inside the narrow strip. Besides, a small dis-
turbance will drive the state outside of the strip even
if it is already at the balance position. Actually, we
have never been successful in balancing the beam
with I, = 0.14. In what follows, we will present a
new control approach which will overcome the diffi-
culty in stabilization by using small bias current.
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varying I

s ec)

Figure 5: The time resposes of 8

4 CONCLUSIONS

We proposed a general framework to coordinate
the transient performances and steady state perfor-
mances. By applying this framework to the control
of magnetic bearing systems, we developed a system-
atic design approach to handle the conflict between
the convergence rate and low bias current. Experi-
mental results confirmed the effectiveness of our pro-
posed design approach.
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3.2 An Exact Linear Model

The simple linear relation between I;, I and I
in (16) results in a nonlinear dynamical relation (17)
between I and 8. This nonlinearity becomes severe
when 8 is close to +g;. When # is very close to
+gq, if the currents are nonzero, then the attractive
force between the beam and the electromagnet at one
end will be very large, causing this end to stick to
the electromagnet. To overcome this situation, we
should make /; and > proportional to the air gap,
or proportional to go + 8. Specifically, we propose
the following relation between I, I and I,

go—0

P -
fotb L=(h-DE=" ()
0

g0

In this way, the dynamical relation between f and ¢
is simply

L = (Ib+I)

JO=—Dé - 4e, 1. (21)
or,
6 0 1 6
[@-] [o—%“é}“ﬁ[—*—?]’
=: Apz + LB, (22)

This system is not only linear, but also maginally
stable with one open-loop pole at 0 and another one
at —4c.Jy/J. We note that there is no problem in
generating the currents given by (20) since the values
of @-f—" are between 0 and 2 (|6| < go).

In what follows, we will present some controller
design schemes following the framework in Section 2.

3.3 Controller Design

Ideally, we would like that the fluxes of the elec-
tromagnets are below saturation level, This can be
guaranteed by restrict the magnitudes of the cur-
rents [y and I to be less than some number Iy:
|I1], |[T2] € Im. Since |(go + 8)/ga] < 2, we need to
restrict |I| < Ip/2 — It. Consider a linear controller
of the form I = (Ij/2 - I;)Fz. The closed-loop
system is

T = Aoz + BlI;,(IM/2 - Ib)F.’D.

To avoid flux saturation, we need to restrict |Fz| <
1. Let p= Iy(Iae /2 — Ip). The maximal p is obtained
at I, = Ip/4 with the value of p; = I3,/16. Since
large I, will produce large power loss, we would like
to choose I < Ipr /4.

Using the method in Section 2, it is easy to design
F to maximize the convergence rate for a fixed I,.
We can also design a feedback matrix F which pro-
duces a fast convergence rate for large I and guar-
antees certain convergence rate for small I.

3.4 Experimental Results
We consider the balance beam test rig at Univer-
sity of Virginia. The parameters of the experimental

system are

J = 0.0948kgm, go = 0.004rad

¢ = 0.1384kgm /A%, Iy = 2A.

In the steady state, we choose I = 0.14. Following
Section 2’s method, we designed the following feed-
back law

I=(1-IL)Fz, F=[171.1263 21.8343], (23)
and I is chosen as a function of the state z:
I, = 0.1 + 0.45at(10(62 + 0.0016%)/6.004%). (24)

The maximal I, is 0.5A.

We compared the transient responses under the
control of (23) by using a varying bias current (24)
and a constant bias current I, = 0.1 with both sim-
ulation and experiment. In simulation, the initial

0.0039 | The simulation
results are shown in Fig. 3, where the solid curve
is the time response under a varying bias and the
dashed curve is the time response under a constant
bias I = 0.1, Fig. 3 shows clearly that the transient
response by using a varying I is much better than
that by using a constant [p.

state is taken as z =

Figure 3: The time resposes of § under constant I, and
varying I

The experimental results are shown in Fig. 4,
where the solid curve is the time response under a
varying I, and the dashed curve is that under a con-
stant I;. The initial conditions are both chosen as
0.004

0
obtained by pushing the beam to touch one of the
electromagnets several times after the balance posi-
tion had been reached. We see that the beam always
go back to the balance position. This was impossible
to do with a bias current I = 0.1A4 for the linearized
system (18).

= . The two time responses in Fig. 5 are
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